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Application of Fractal Geometry to Interfacial Electrochemistry
- Il. Impedance Behaviour of Fractal Electrodes
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Abstract : This article involves the application of the fractal geometry to interfacial electrochemistry. Especially, we
gave our attention to impedance behaviour of the fractal electrode. First, this article briefly explained the constant
phase element (CPE) in electrochemical impedance and the de Levie’s transmission line model. Second, we introduced
the Nyikos and Pajkossy’s theoretical works to approach the CPE phenomena using the fractal geometry. Finally this
article presented other various fractal models for analysing the ac response of the rough electrodes.
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1. Introduction

Electrochemists have long been puzzled by the appearance
of the constant phase element (CPE) or capacitance disper-
sion in electrochemical impedance of ideally polarisable (i.e.
blocking) electrode, and considerable effort has been made to
understand the origin of the CPE. One of the most possible
causes of the CPE is known to be of geometric origin : An
irregular and porous electrode geometry causes current den-
sity inhomogeneities and thus yields deviations from ideal
behaviour,

Most of the contributions to the impedance of the porous
electrodes deal with transmission line models.'> The trans-
mission line models usually consider the one-dimensional
ionic movement in the electrolyte. Although in some cases*”
transmission line models have been more or less successful
in explaining the observed impedance behaviour of the
porous electrode, the most serious objection to the transmis-
sion line model is the implicit assumption that the curvature
of the equi-potential surfaces can be neglected in the calcula-
tion. That is, the transmission line model can be safely used
only for the pores with a depth much larger than their width.

More realistic morphologies can be taken into account by
the exact frequency-dependent potential distribution within
the entire electrolyte. However, In general these real situa-
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tions turn out to be much complicated and a straightforward
analytical calculation of the overall impedance is usually not
possible. In connection with this topic, the fractal geometry
has given a powerful tool for the analysis of the CPE behav-
iour of the rough electrode. A number of theoretical papers®2"
have devoted to investigate the relationship between the frac-
tal geometry of the electrode and the CPE impedance.

This article explained the transmission line model for the
analysis of the CPE impedance. In addition, we introduced
the Nyikos and Pajkossy’s works on the ac response of the
fractal blocking electrode. Finally, this article presented vari-
ous fractal models for the analysis of the ac response of the
rough and irregular electrode.

2. Constant Phase Element (CPE) in
Electrochemical Impedance

It has been known for a long time that in the absence of
faradaic reactions, the impedance of an electrode in contact
with an electrolytic solution usually deviates from the purely
capacitive behaviour, and thus simple RC circuit does not
give an adequate description of the ac response of the elec-
trode. The electrochemical impedance of a real electrode is
frequently represented by an equivalent circuit containing
constant phase element (CPE) showing power law frequency
dependence as follows :

Ao) = (1/0)(o)™® )
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, where ¢ and o mean the CPE coefficient and the CPE
exponent, respectively, and @ represents the angular frequency.

In recent years it has been demonstrated by many research-
ers that the deviation from ideal capacitive behaviour
observed on a real electrode, i.e. CPE exponent ¢ is inti-
mately related to surface roughness. Now we focus our atten-
tion on those cases when the origin of the CPE behaviour is
purely geometrical. Such behaviour has often been found in
the porous, rough, and irregular electrode.

The attempt to model the effect of surface roughness on
the electrochemical impedance was successfully carried out
by de Levie.""> He represented a surface pore by a transmis-
sion line as shown in Fig. 1, and derived the following
expression for the impedance of the pore, Z,

Zy=(1- j)(z—z)c)o's coth[(l + j)L(%’E)O'S} 2

, where r and ¢ are resistance and capacitance per unit
pore depth, respectively, and L is pore depth. The resultant
impedance locus is plotted in Fig. 2. At high frequencies,
Eq. (2) reduces to

0.5
Zothigh jreq ) = (1-)( 55 ©

and the interfacial impedance has a phase angle 45°,
whereas at low frequencies Eq. (2) can be written as

Tt @

Zy(low freq.) = facLt 3

and the phase angle tends towards 90°.

T T
Fig. 1. The equivalent circuit of a pore invaded by a conducting
electrolyte (de Levie’s transmission line model).
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Fig. 2. The complex-plane impedance plot of a cylindrical pore.
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Fig. 3. Pore shapes treated by Keiser et al® and corresponding
complex-plane impedance plots.

Although de Levie’s work succeeds in explaining qualita-
tively the observed impedance behaviour of the porous elec-
trode, many assumptions and approximations limited the
ability of the model to represent accurately the measured
impedance data. The assumptions include the cylindrical
shape of the pore, the lack of tortuosity of the pore, the lack
of distribution of pore sizes and depths, and finally the lack
of cross linking between pores.

Over the years, many attempts have been made to improve
de Levie’s cylindrical pore model. Especially Keiser et al.¥
showed that the more occluded the shape of the pore, the
more the impedance locus was distorted from capacitive
behaviour (Fig. 3). Nevertheless, although the total imped-
ance will reflect more or less the shape of the individual
pore, the single pore models still do not account for the
effects of the random distribution of pores on the surface and
the random variations in pore geometry or the complicated
surface topology. Many researchers tried to modify the single
pore model on various assumptions about pore distribution
and pore size, etc.”*™ However, the increased complexity of
the models and many assumptions would tend to undermine
its credibility and usefulness, and to prevent one from draw-
ing meaningful conclusions.

3. Ac Response of Fractal Blocking Electrodes :
Nyikos and Pajkossy’s Works

The situation changed drastically in the mid-1980s after
Mandelbrot’s book?® on fractals. The first papers based upon
the fractal geometry appeared claiming that solid surfaces
(both porous and rough) can be modelled by fractals.”>>"
Since those works, the questions raised by many theoreti-
cians were whether or not the impedance response of capac-
itive electrodes of the fractal geometry is of CPE type, and if
it is, whether or not there is some correlation between the
CPE exponent o and the fractal dimension Dy. '

Many fractal models have been developed to give the
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answer. One group of fractal models is based upon the scal-
ing laws of surface capacitance and solution resistance. Since
dilatational symmetry is a basic feature of fractals, one can
set up equations which relate the system size and the fre-
quency dependence of impedance. Another group of fractal
models has been developed by generalising the pore models
by assuming branching pores or by introducing a fractal size
distribution of an ensemble of pores or caves. These models
have become fairly popular because the impedance can be
calculated easily. In this Section, we explain the former
group of the models (especially the model by Nyikos and
Pajkossy'"), and in the following Section, we present the lat-
ter group of the models.

Nyikos and Pajkossy'” started by noting that any two-ter-
minal RC network can be written as the parallel combination
of a number of series RC circuits. For one such series cir-
cuit, the elementary admittance is expressed as

_ 1 Y jeC
= (Rk+ j_a)Ck) " T+joR,C, &)

A NCAN
so that the admittance of the entire parallel assembly fol-
lows as.

= JoCy
Y= Ek:Yk Z1 +joR,C, ©.

The R, and C, are elementary resistance and capacitance,
respectively. Now let us enlarge the whole system in each
spatial direction by a factor of m. Since Y is a macroscopic
quantity and the electrode is macroscopically two-dimen-
sional, Y scales in the following way

Y(m, @) = m°Y(1, ®) @)

, where the first argument denotes system size. Next, since
capacitance is proportional to area and the area changes as mP s,
the scaling law for the microscopic C; element takes the form

Clm) = m™C (1) ®).
Finally the element R, scales in the usual way

Ry(m) = m™'R,(1) o
From the combination of Egs. (6), (8) and (9), we have

_ JoC(m)
Y(m, ») 21+,a>1ek(m)ck(m)
Dy~
J(om )Ck(l)
=my — D,-1 (10).
k1 +j(om IR ()G (1)

Dy-1
mY(1, om ")

Substituting Eq. (10) into Eq. (7), we get
Y(l, a)mD"_l)

YL, @) =m an.

Alternatively we obtained easily the following equation
from Eq. (1).

1/ Z1, om "
1/41, w)

Y(1, om>" "y
Y1, )

_ O'(ja)mD”_ l)a Dy-1.«a (12)

= (m )

o(jw)”
Then, from Egs. (11) and (12), we finally obtain

1

o= D1 (13).

Thus, the CPE exponent o becomes the measure of surface
irregularity. For example, for a perfectly smooth surface with
Dy =2 at all scales, Eq. (13) predicts =1, i.e. purely
capacitive behaviour. In other limit as Dy— 3, o — 0.5
which is de Levie’s well-known result for the electrode with
cylindrical pore. Eq. (13) also implies that surfaces with dif-
ferent morphologies but with the same fractal dimension are
equivalent as far as impedance is concerned.

4. Various Fractal Models for Ac Response of
Rough Blocking Electrodes

4.1. Sierpinski fractal electrode I:Nyikos and Pajkossy’s
model*V

The cell geometry is based on the Sierpinski carpet or gasket
(Fig. 4 (a)-(c))*® characterised by the ratio N of the number
of pores generated at stage n to that number at stage n-1, and
the reduction ratio m of the side lengths of pores at consecu-
tive stages. The fractal dimension of the carpet or gasket, Ds,
is given as D;= In(N)/In(m). The Sierpinski electrode is con-

(a) (a)-1

(b) (c)
Fig. 4. Various Sierpinski electrodes with the fractal dimension Dy of

(a) 1.8928, (b) 1.2619, and (c) 1.5850. (a)-1 represents the horizontal
cross section of electrode (a).



gaa71318k8x), A 4d, A 13, 2001 29

100 ——rrmy AR T T Trre T ooy

o)
O
(=]
m L}
'c S~
-~ o]
) “w
o o
5: O
)
7]
©
<
o

20 O Fig. 4(a); D, =1.8928 402

[ O Fig. 4(b) ; D, = 1.2619

10 A Fig. 4(c) ; D, = 15850

0 PEPRTIIT BRI BETSTETTTT BRI | { Y d { s O

10 10° 10° 100 10° 10° 10° 10" 107

Frequency / Hz

Fig. 5. The variation of phase angle with frequency at three different
Sierpinski electrodes of Fig. 4. It was assumed that the side length of
the electrode is 1 cm, the resistivity of the electrolyte is 0.05 Qcm,
and the double layer capacitance per unit area of the electrode/
electrolyte interface is 10 Fem.

structed by fitting each pore of cubic shape in its horizontal
cross section, as depicted in Fig. 4(a)-1. The bottom interface
of each pore is assumed to be capacitive (solid line in Fig.
4(a)-1) and the other sides insulating (dotted line in Fig.
4(a)-1). The counter electrode is assumed to be located just
in front of the Sierpinski electrode, which means that the
individual pores are independent, and their equivalent circuit
is a series RC circuit.

Let the solution resistance and the double layer capaci-
tance of the largest pore be denoted by Ry and Cy, respec-
tively. Then, the capacitance and resistance of the kth-order
(or k-staged) pore equal Co/m* and Rom", respectively, and
the number of kth-order pores is N*. Thus, the total admit-
tance of the cell is given by

L 1
Y(w) = 2 —
50 Rom* N + GoCym PN (14,
e e

k=0 j wCOROm_k +1

When the frequency @ goes towards infinity, the admit-
tance becomes Y = ¢;(jwCyR,)%, where ¢; = W/[Roln(m)sin(am)]
and o= In(N/m)/In(m) = D,-1. Thus this type of the Sierpin-
ski electrode shows CPE behaviour with the exponent ot=D;-1.
The variation of phase angle with frequency is plotted at 3
different Sierpinski electrodes (Fig. 4(a)-(c)) in Fig. 5.

4.2. Sierpinski fractal electrode II : Chu’s model'*®

Let us consider the cell configuration of Fig. 6. The work-
ing electrode is the Sierpinski carpet of the fractal dimension
D, =InN/Inm in its cross section. Only the walls of the pores
are assumed to be capacitive. If the solution resistance
between working and counter electrodes is taken into

L -

T

d

Fig. 6. The configuration of the Sierpinski working electrode and
counter electrodes.

account, the elementary impedance Z, for a single pore is
given by

A L
z, = 2%’%(‘%‘] coth[——] (15)
ay 2ay 24

with A" = (2Epwlay)*(1+)), and a; = a/m*, where p is the
resistivity of the electrolyte; &, the capacitance per unit area
of the electrode surface; a;, the side length of the pore at the
kth-order; d, the distance between working and counter elec-
trodes, and L represents the length of the Sierpinski elec-
trode. The first term of Eq. (15) is the resistance due to the
solution outside the pore, and the second term is the imped-
ance due to the single pore in the working electrode.'¥

Now, the second term of Eq. (15) can be written as (pAy/
2a;%)coth (L/ 2A4)=pL/ 12ai + (4jwakL§)‘1 at sufficiently low
frequencies. It is noted that the first term in the above equa-
tion represents a resistor with resistance pL/ 12a;* and the
second term represents a capacitor with capacitance 4a,LE.
Substituting the above equation into Eq. (15), we get

Z,= %(Zd + 152) + (4joaLE)™" (16).
4

That is, in the low frequency limit the elementary imped-
ance of the combination of a single pore and the solution
outside the pore can be represented by a capacitor in series
with a resistor.

Then, the total impedance is given by

-1
i} n NE
Z(w) = (¥) = | Y —
k=1 Zk
(17
=r1(1\’/m-1)2 N" N/m-1

N-1  N/my*" jwc,(N/m)"
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Fig. 7. The variation of phase angle with frequency at three different
Sierpinski electrodes. It was assumed that a = 0.1 cm, d = 0.1 cm, and
L=1cm.

, where r; and ¢, are defined as p(2d + L/12)/a,* and
4&La,, respectively, and the subscript » indicates the total
number of stages. From Eq. (17) we easily obtain the follow-
ing relation

z(f‘;’) - (’%z)zn_l(w) (18).

For extremely large n, the small-® expansion eventually
breaks down, but the relation in Eq. (18) remains valid'® and
approaches the dynamic scaling law

2) - (o

, where Z(w) = rl,i_r)r‘}“Zn. Since the solution of Eq. (19) is
Z(w)< @ at sufficiently low frequencies, we obtain

Z o Ny _ 5 _
oa=2 In(m) = 2-Dyg (20).

Fig. 7 shows the variation of phase angle with frequency at
3 different Sierpinski electrodes with the cross sections of
Fig. 4(a)-(c), calculated on the basis of Eq. (15). The phase
angles at the low frequencies are equal to be those predicted

by Eq. (20).

4.3. Cantor fractal electrode I : Liu’s model'™

The cross section of the electrode used in this model is
depicted in Fig. 8. The electrolyte and the electrode are
shown in black and white, respectively. The grooves in the
electrode are seen as protrusions on the electrolyte side. Each
groove has the self-similar structure in that it subdivides into
two branches, and the branches are similar to the whole
groove when magnified by a factor m. Viewed from the elec-
trolyte side, the interface is regarded as the Cantor bar’?¥,
whose fractal dimension is D, =1n2/Inm. The model can be
generalised to N grooves, each of which subdivides into N

Fig. 8. Cantor fractal model of a rough interface between an
electrolyte (black) and an electrode (white).

T

Fig. 9. Equivalent circuit for the Cantor fractal model of Fig. 8.

branches at every stage. The scale factor m satisfies m > N
and thus D, =IN/Inm<1. It is assumed that only the walls
of the grooves are capacitive.

The electrical properties of this structure can be analysed
by constructing an electric circuit analogue of Fig. 9. Since
the cross section area of the grooves is reduced by the ratio
1/m at every stage of branching, whereas the depth of the
grooves is invariant, the resistance R increases by the ratio m
at every stage. The common ground is the electrode.

The impedance of the electric circuit of Fig. 9 has the
form of an infinite continued fraction:

Z(w) = R+ 1

joC +

mR + 5

2R + _ 1 2n
JjoC + ...

joC +

It can be readily verified for wRC < 1 that Z;(w) = R+1/
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Fig. 10. The variation of phase angle with frequency at four

different Cantor electrodes. It was assumed that the side length of
the electrode is 1 cm.

JjoC, Zy(w)y=R(1+2m/9)+1/3jwC, ..., where the sub-
script means the number of branching step. After a suffi-
ciently large number of branching steps, n 2> 1, and for m>
2, wRC < 1, the impedance can be written approximately as

- m(m + 1) m\" 1
Z"_R(m—l)(m—Z)(Zm—l)(Z) + 2—_"ij (22).

From Eq. (22) it is seen that

zn(ﬁ’) = 7, (@) 23).

m

For large n, Eq. (18) approaches the dynamic scaling law
@)y _m
Z(;l) = 2Z(co) 24)

, where Z(®) = Ai_r’riZn. Since the solution of Eq. (24) is
Z(®) < @~ at sufficiently low frequencies, we obtain

a=1- = 1-D¢ (25).

Fig. 10 shows the variation of phase angle with frequency
at various m values, calculated on the basis of Eq. (21). The
phase angles at the low frequencies are equal to be those
predicted by Eq. (25).

4.4. Cantor fractal electrode II:generalised Liu’s
model™"

Finally, we examine the self-affine’®?® fractal model. The
cell configuration is shown in Fig. 11, which generalises the
model of Section 4.3. The electrolyte protrudes into the elec-
trode. At each successive stage, NN, new branches appear
which are scaled in depth and width by 1/m, and 1/m,,

&

h/m,

>

elgctrode

4_.| W/m,’
W/m,? /l
W/m, Wy n

electrolyte

le
[+ >

w

Fig. 11. Self-affine Cantor fractal model of a rough interface
between an electrolyte and an electrode.

respectively, and in height by 1/m,. N is the number of new
branches appearing at each stage of the structure created by
projecting the Cantor block on the x-z plane, and N, on the
y-z plane. m,, m, and m, mean the reduction ratios in the
direction of x, y, and z, respectively. By geometry, m,> N,
and m, > N,. It is assumed that only the walls of the branches
are capacitive.

The electric circuit analogue of this cell is constructed as
tree structure with N,N, new branches appearing at each new
node. Each branch has a series resistor and a capacitor con-
nected to ground. The resistance R increases by mum,/m, in
each successive stage, due to the reduction in cross-sectional
area of the branch by 1/m.m, and the decrease in length by
1/m,. Similarly, the capacitance C is reduced by (1/m,+1/
m,)1/m, since the interfacial areas of the walls on the x-z and
y-z planes are reduced by 1/m,m, and 1/m,m,, respectively,
in successive stages. The electric circuit of the interface is
shown in Fig. 12, which circuit describes the special. case of
my=my=m, my=1, and N, =N,=2.

The input impedance of this circuit has the form of a fol-
lowing infinite continued fraction

Z(w)y=

(26).

The model can be solved for three different cases. In the
first case, we let m, = m,=m, m,;= 1, and N,= N,= N. From
Eq. (26), then we find
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m‘R

m’R —

4
AT m'R
IC/m

Fig. 12. Equivalent circuit for the self-affine Cantor fractal model of
Fig. 11. It was assumed thatm, =m,=m,m,=1and N, = N,=2.

m*Z( )

jomCZ(w) + N*
Under the assumption that Z(w) — °© and «Z(®) —>0 as
o — 0, Eq. (27) becomes

z(ﬂ’) - R+ @7).

m

2
oy _m
7(2) - " 2(a) (28).

Since the solution of Eq. (28) is Z(w)< w? and the fractal
dimension D of the surface is determined, by measuring the
total surface area at different scales,' to be D = In(N?)/
Inm + 1, we obtain

2
InN) _5_p 29).

@=2-Tm =

In the next case, we let m,>m, and m, = 1. For this case,
Eq. (26) says that the capacitive term is dominated by the (1/
my)" term. Keeping in mind that it is not the few beginning

terms that determine ¢, but the infinite tail of the continued

fraction, we can concentrate only on that part of the contin-
ued fraction where the m, term dominates. Solving Eq. (26)
as in the first case and then taking the fractal dimension of

the surface as D = 2 + In(N,N,/m,)/In(m,), we find

In(N.N_/
a=1_n(_meX2=3_D (30).
In(m,)
Finally, consider the most general case: m,>m, and
m, > m, Treating the impedance Eq. (26) as in the first case,
we find

In(N.N_/
a=1_"(_XLmﬂz) 31).

In(m,/m’)

In this case, the fractal dimension of the surface is calcu-
lated to be D =2 + In(N,N,/mym,}/In(m,). Then, & is not
related to the fractal dimension D.

5. Concluding Remarks

The present article explained first the constant phase ele-
ment (CPE) in electrochemical impedance and second briefly
introduced the Nyikos and Pajkossy’s work'" on the charg-
ing /discharging of the fractal blocking electrode. Finally,
this article summarised various fractal models for analysing
the ac response of the rough electrodes. On the basis of the
fractal geometry, one can quantitatively estimate the fractal
dimension of the electrode surface using the electrochemical
impedance spectroscopy.

As a matter of fact, it is still a troublesome issue to relate
the determined fractal dimension with the surface roughness
of the electrode: Even on single crystalline surface, defects
of the crystal structure may cause local capacitive inhomoge-
neities, thus causing non-ideal capacitive behaviour. This is
especially true when real rough surfaces with lots of crystal
defects and dislocations, etc. are considered. These surface
inhomogeneities cause additionally the time constant distri-
butions, and thus lower the phase angle of the impedance.
Under these complicated circumstances, the time constant
distributions may give more meaningful information than the
fractal dimension does, about the origin of the abnormal
electrochemical response of the electrode to ac signal. >3V
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