• Title/Summary/Keyword: 풍화훼손등급

Search Result 9, Processing Time 0.025 seconds

A Study on Structural Reinforcement Suitable for the Weathering Properties of Stone Cultural Heritage (석조문화재의 풍화물성을 고려한 구조보강방법 연구)

  • Lee, Dong Sik;Kim, Hyun Yong
    • Journal of Conservation Science
    • /
    • v.31 no.4
    • /
    • pp.477-488
    • /
    • 2015
  • At this, in this study, some tests were conducted to come up with a method to minimize intervention, to reduce the secondary damage to original materials, and to produce remarkable reinforcing effects. The followings show objective standards. The proportion of original material to steel reinforcement bar (the ratio of steel reinforcement bar) needs to be calculated in light of weathering intensity. Second, in the case of partial damage, prosthetic treatment is applied to add new stone materials to original materials. In that case, the ratio of steel reinforcement bar should be calculated based on material that is highly resistant to weathering. With the results of this study, it is possible to suggest conditions that can structurally stabilize stone cultural heritage, according to the weathering area. As a result, the ratio of steel reinforcement bars can be 0.13 to 0.23 in the case of $800kgf/cm^2$ or less, 0.24 to 0.28 in $800kgf/cm^2$ or higher, and 0.29 to 0.5 in $1200kgf/cm^2$ or higher. In particular, there is the need to take the coefficient of rupture of stone material and the properties of the steel reinforcement bar into account in cases of calculating the ratio of steel reinforcement bars according to weathering intensity.

Relationship Between Deterioration State and Conservation Treatment Types for State-designated Stone Cultural Heritage in Korea (국가지정 석조문화재의 훼손상태에 따른 보존처리 상관성 연구)

  • Lee, Myeong Seong;Chun, Yu Gun;Lee, Mi Hye;Lee, Jae Man;Park, Sung Mi;Kim, Jae Hwan
    • 보존과학연구
    • /
    • s.34
    • /
    • pp.64-81
    • /
    • 2013
  • It is not easy to define the priority criteria of the need of conservation treatment for stone cultural heritage, although many of them have been treated and restored over the past decade. This study approached the correlation between damage grade and the need of conservation treatment based on damage diagnosis of stone cultural heritage carried out from 2001 to 2005. The number of Third-graded (from First to Fifth-grade) stone heritage in deterioration was the highest among state-designated stone cultural heritage. The Fourth-graded stone cultural heritage (143 in total) was mostly influenced by high physiochemical deterioration, whereas the Fifth-graded ones (61 in total) was dominantly affected by biological colonization. It was estimated that total 211 stone cultural heritage were treated for conservation and restoration from 2002 to 2011. They were usually cleaned (total 134, 26.1%), joined and consolidated, and maintenance works as shelter construction, drainage installation and surrounding cleaning were carried out for some of them. The number of conservation intervention increased with the high deterioration grade, and the case number of metamorphic and sedimentary rocks. By age, the stone cultural heritage in Three-kingdom Period were treated the most, and other heritage in Unified Shilla, Goryeo and Joseon showed an approximate ratio. The stone cultural heritage fallen in the fifth-grade in deterioration demonstrated the highest ratio, approximately 80% of conservation intervention. These results can be used as preliminary data to define the emergency criteria for conservation intervention policy.

  • PDF

Material Characteristics and Ultrasonic Velocity Diagnosis of the Five-storied Stone Pagoda in Tamni-ri, Uiseong (의성 탑리리 오층석탑의 재질특성과 초음파 물성진단)

  • Lee, Myeong Seong;Lee, Jae Man;Kim, Jae Hwan
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.1
    • /
    • pp.70-85
    • /
    • 2012
  • Uiseong Tamni-ri Five-storied Stone Pagoda is composed of andesitic tuff and partially combined with tuff breccia and fine-grained granite. The andesitic tuff is identical to basement rock of Geumseongsan Mountain based on lithological, mineralogical and geochemical characteristics. The pagoda has suffered physical weathering such as crack and scaling, discoloration and biological colonization with complex reaction. Expecially, dark gray and brown discoloration appeared whole over the surface of the pagoda, and three to five-layered exfoliation and granular disintegration dominantly occurred in the fourth and fifth roof stones. It is assuming that the stone elements of the pagoda are evaluated as third to forth grades (average third grade) of weathering compared to fresh rock in Geumseongsan Mountain. The physical strength of the stone elements shows low values in the south and west sides of the pagoda that corresponds high weathering degree of the west side due to exfoliation, crack and granular disintegration. It is necessary to investigate the pagoda for precise deterioration assessment, monitoring and conservation treatment.

A Study on the Conservation State and Plans for Stone Cultural Properties in the Unjusa Temple, Korea (운주사 석조문화재의 보존상태와 보존방안에 대한 연구)

  • Sa-Duk, Kim;Chan-Hee, Lee;Seok-Won, Choi;Eun-Jeong, Shin
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.285-307
    • /
    • 2004
  • Synthesize and examine petrological characteristic and geochemical characteristic by weathering formation of rock and progress of weathering laying stress on stone cultural properties of Unjusa temple of Chonnam Hwasun county site in this research. Examine closely weathering element that influence mechanical, chemical, mineralogical and physical weathering of rocks that accomplish stone cultural properties and these do quantification, wish to utilize by a basic knowledge for conservation scientific research of stone cultural properties by these result. Enforced component analysis of rock and mineralogical survey about 18 samples (pyroclastic tuff; 7, ash tuff; 4, granite ; 4, granitic gneiss; 3) all to search petrological characteristic and geochemical characteristic by weathering of Unjusa temple precinct stone cultural properties and recorded deterioration degree about each stone cultural properties observing naked eye. Major rock that constitution Unjusa temple one great geological features has strike of N30-40W and dip of 10-20NE being pyroclastic tuff. This pyroclastic tuff is ranging very extensively laying center on Unjusa temple and stone cultural properties of precinct is modeled by this pyroclastic tuff. Stone cultural propertieses of present Unjusa temple precinct are accomplishing structural imbalance with serious crack, and because weathering of rock with serious biological pollution is gone fairly, rubble break away and weathering and deterioration phenomenon such as fall off of a particle of mineral are appearing extremely. Also, a piece of iron and cement mortar of stone cultural properties everywhere are forming precipitate of reddish brown and light gray being oxidized. About these stone cultural properties, most stone cultural propertieses show SD(severe damage) to MD(moderate damage) as result that record Deterioration degree. X-ray diffraction analysis result samples of each rock are consisted of mineral of quartz, orthoclase,plagioclase, calcite, magnetite etc. Quartz and feldspar alterated extremely in a microscopic analysis, and biotite that show crystalline form of anhedral shows state that become chloritization that is secondary weathering mineral being weathered. Also, see that show iron precipitate of reddish brown to crack zone of tuff everywhere preview rock that weathering is gone deep. Tuffs that accomplish stone cultural properties of study area is illustrated to field of Subalkaline and Peraluminous, $SiO_2$(wt.%) extent of samples pyroclastic tuff 70.08-73.69, ash tuff extent of 70.26-78.42 show. In calculate Chemical Index of Alteration(CIA) and Weathering Potential Index(WPI) about major elements extent of CIA pyroclastic tuff 55.05-60.75, ash tuff 52.10-58.70, granite 49.49-51.06 granitic gneiss shows value of 53.25-67.14 and these have high value gneiss and tuffs. WPI previews that is see as thing which is illustrated being approximated in 0 lines and 0 lines low samples of tuffs and gneiss is receiving esaily weathering process as appear in CIA. As clay mineral of smectite, zeolite that is secondary weathering produce of rock as result that pick powdering of rock and clothing material of stone cultural properties observed by scanning electron micrographs (SEM). And roots of lichen and spore of hyphae that is weathering element are observed together. This rock deep organism being coating to add mechanical weathering process of stone cultural properties do, and is assumed that change the clay mineral is gone fairly in stone cultural properties with these. As the weathering of rocks is under a serious condition, the damage by the natural environment such as rain, wind, trees and the ground is accelerated. As a counter-measure, the first necessary thing is to build the ground environment about protecting water invasion by making the drainage and checking the surrounding environment. The second thing are building hardening and extirpation process that strengthens the rock, dealing biologically by reducing lichens, and sticking crevice part restoration using synthetic resin. Moreover, it is assumed to be desirable to build the protection facility that can block wind, sunlight, and rain which are the cause of the weathering, and that goes well with the surrounding environment.

Scientific Investigation and Conservation Treatment of the Three-story Stone Pagoda at Jangha-ri, Buyeo (부여 장하리 삼층석탑의 과학적 조사 및 보존처리)

  • Kim, Joohyung;Han, Minsu
    • Conservation Science in Museum
    • /
    • v.27
    • /
    • pp.103-124
    • /
    • 2022
  • This study examined the properties of the materials used in the three-story pagoda at Jangha-ri, Buyeo. It was performed in order to identify the objective condition of the pagoda and establish an appropriate plan for the conservation treatment of the pagoda. According to the study, the average total magnetic susceptibility was 3.71 (10-3 SI unit), and at least four types of granite with different origins were likely used in the production of the pagoda. The ultrasonic velocity averaged 1,519m/s, and the coefficient of weathering showed an average of grade 4. The thermal gradient between the cement (restoration materials) and original materials was identified through thermal imaging. In some areas, the cement restoration materials required replacement with new stone materials with properties similar to those of the original stone materials. Taking into account these results, a map of weathering damage was prepared and appropriate conservation treatment plans were established based on the findings of previous studies. Since the pagoda had suffered severe biological damage and discoloration, surface contaminants were removed through wet cleaning with distilled water and a brush. The exfoliated areas were reinforced on the site by mixing epoxy resin with powdered stone with the same properties as the original stone materials of the pagoda.

Analysis of Surface Contaminants and Physical Properties of the Daejanggakgibi Stele of Silleuksa Temple using Non-destructive Technology (비파괴 기술을 활용한 여주 신륵사 대장각기비의 표면오염물 분석과 물성진단)

  • KIM, Jiyoung;LEE, Myeongseong
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.2
    • /
    • pp.186-197
    • /
    • 2022
  • The Daejanggakgibi Stele of Silleuksa Temple in Yeoju is a stone stele from the Goryeo Dynasty that is inscribed with various stories about the construction of Daejanggak, a place where Buddhist scriptures were kept. This stele has been maintained for a long time in a state in which discoloration of the body has occurred, and the inscription has been partially damaged due to dozens of cracks. Using non-destructive analysis methods for stone artifacts, material investigation, portable X-ray fluorescence analysis, and ultrasonic velocity analysis for the stele were performed. It was confirmed that the stele body was composed of light gray crystalline limestone, and the base stone, support stone, and cover stone were medium-grained biotite granite. Portable X-ray fluorescence analysis confirmed that iron(Fe) was an original coloring element of the stele surface. From the distribution pattern of the coloration, it can be inferred that iron-containing materials flew down from between the stele body and the cover stone. Thereafter, living organisms or organic contaminants attached to it so that yellow and black contaminants were formed. Ultrasonic diagnosis revealed that the physical property of both the front and back surfaces ranged from fresh rocks(FR) to completely weathered rocks(CW), and the average weathering index was grade 3(intermediate). However, the point where cracks developed intensively was judged to be the completely weathered stage(CW), and some cracks located in the upper and lower parts of the stele bear potentially very high risk. It is necessary to monitor the movement of these cracks and establish reinforcement measures for conservation in the future.

A Study on the Material Characteristics and Weathering Aspects of Sculpture Stone Around the World Cultural Heritage Joseon Dynasty Royal Tombs - Focused on the East Nine Royal Tombs - (세계문화유산 조선왕릉 석조문화재의 재질특성 및 풍화양상 연구 - 구리 동구릉을 중심으로 -)

  • CHO Hajin ;CHAE Seunga ;SONG Jinuk;LEE Myeongseong ;LEE Taejong
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.4
    • /
    • pp.180-193
    • /
    • 2022
  • The East Nine Royal Tombs is a representative place in the Royal Tombs of Joseon (a World Heritage Site). It consists of 1,289 stone artifacts including 979 related stone structures, 310 stone statues, and objects. Most of the stone structures in the East Nine Royal Tombs are composed of biotite granite, but some tombs are composed of light red granite. As a result of magnetic susceptibility measurement, the average data from Geonwolleung to Mongneung, excluding Hyeolleung, were similar, so it is estimated that stones were obtained from the same quarry. In the case of Sungneung, Sureung, and Gyeongneung, the range of susceptibility measurement is widely distributed. It assumed that the newly produced stones were mixed in the moving and construction process. Also, stones might be gathered from different quarries. As a result of a conservation status investigation, both the mound member and the ridge stone had the highest damage rate due to peeling and granular decomposition according to surface weathering. In the case of surface discoloration, yellowing and soils were found in the burial mound members. Yellowing, blackening, and soil were identified in the ridge stone structures. Bio-degradation is the major factor of deterioration of the East Nine Royal Tombs and the conservation status of the tombs were detected as grades 4 to 5. It seems that it is easy for the environment of the royal tombs to form soil for the microorganisms and fine conditions for continuous moisture. In the case of structures, they are in relatively good condition. As a result of a comprehensive damage rating for each tomb, the overall condition is good, but the Geonwolleung Royal Tomb and Hyeolleung Tomb, which were created in the early period, had relatively high weathering ratings. Stone objects in East Nine Royal Tombs have lost many pieces and gateway members due to surface deterioration. Also, secondary damage is ongoing. Each damage factor of the stone artifacts of the East Nine Royal Tombs combines to cause various and continuous damages. Therefore, it is necessary to establish regular conservation status data of the stone artifacts for efficient management after processing as well as conservation treatment of the royal tombs, and specific management manuals and systems. This study investigated the conservation status of stone structures in the East Nine Royal Tombs, a World Heritage Site, and systematically classified them to provide priority and necessity for conservation processing. We look forward to establishing a plan for the conservation and management of the East Nine Royal Tombs with this database in the future.

Characterization of Surface Deterioration for Stone Property around the Hyeonleung (Royal Tomb of Joseon Dynasty) in Guri, Korea (구리 현릉 능상석물의 표면 손상특성 평가)

  • Oh, Jeong Hyun;Kim, Sa Dug;Lee, Chan Hee;Lee, Tae Jong
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.353-364
    • /
    • 2016
  • The materials of sculptured stone property around the Hyeonleung Royal Tomb in Guri consist mainly of high weathered of granitic rocks with magnetite-series. Deterioration characteristics occurred highly with microorganism, soil inflow and black contaminants at the burial mound zone. As a result of deterioration evaluation, stone surface around the burial mound zone show serious comprehensive damage of soil inflow (50.5%) and lichen coverage (47.6%) which are the major damaging factors, and there are about 8.6% of biological growth noticeably in the north side. Surface contaminants and the discoloration had the complex causes. Gypsum occurred between joints of stones and the major contaminant type, darkening which was analyzed organic bodies caused discoloration. From result of ultrasonic velocity measurements, there are mean value of 2,195 m/s with highly weathered (HW) grade. Most of the stone properties showed 4 to 5 weathered grade. Therefore, it turned out that sculpture stone properties require conservation treatments. To remove soil accelerating damage factors and lichen occupying high percents, the cleaning process is necessary and consolidation, rejoining and filling are needed as well. Also, consideration on removing conservation materials containing Ca and e fflorescence is required and retreatments need to be considered.