The paper presents the constant temperature digital hot-film anemometer that measures easily a wind velocity at the indoor. The output is linearized using microprocessor and analog-to-digital converter, because the fourth root of the wind velocity is the output voltage of the sensor. The comparison result between fabricated and reference anemometer is less than ${\pm}2%$. In the range of air temperature of $23^{\circ}C{\sim}60^{\circ}C$, the error is about ${\pm}1%$ in wind velocity 10m/sec.
Ko, Dong Hui;Jeong, Shin Taek;Cho, Hongyeon;Kim, Ji Young;Kang, Keum Seok
Journal of Korean Society of Coastal and Ocean Engineers
/
v.24
no.5
/
pp.326-332
/
2012
In this paper, error analyses on the calculation of offshore wind speed have been conducted using HeMOSU-1 data to develop offshore wind energy in Yeonggwang sea of Korea and onshore observed wind data in Buan, Gochang and Yeonggwang for 2011. Offshore wind speed data at 98.69 m height above M.S.L is estimated using relational expression induced by linear regression analysis between onshore and offshore wind data. In addition, estimated offshore wind speed data is set at 87.65 m above M.S.L using power law wind profile model with power law exponent(0.115) and its results are compared with the observed data. As a result, the spatial adjustment error are 1.6~2.2 m/s and the altitude adjustment error is approximately 0.1 m/s. This study shows that the altitude adjustment error is about 5% of the spatial adjustment error. Thus, long term observed data are needed when offshore wind speed was estimated by onshore wind speed data. because the conversion of onshore wind data lead to large error.
Korean Journal of Agricultural and Forest Meteorology
/
v.19
no.3
/
pp.130-139
/
2017
The crop damage caused by strong wind was predicted using the wind speed data available from Korean Meteorological Administration (KMA). Wind speed data measured at 19 automatic weather stations in 2012 were compared with wind data available from the KMA's digital forecast. Linear regression equations were derived using the maximum value of wind speed measurements for the three-hour period prior to a given hour and the digital forecasts at the three-hour interval. Estimates of daily maximum wind speed were obtained from the regression equation finding the greatest value among the maximum wind speed at the three-hour interval. The estimation error for the daily maximum wind speed was expressed using normal distribution and Weibull distribution probability density function. The daily maximum wind speed was compared with the critical wind speed that could cause crop damage to determine the level of stages for wind damage, e.g., "watch" or "warning." Spatial interpolation of the regression coefficient for the maximum wind speed, the standard deviation of the estimation error at the automated weather stations, the parameters of Weibull distribution was performed. These interpolated values at the four synoptic weather stations including Suncheon, Namwon, Imsil, and Jangsu were used to estimate the daily maximum wind speed in 2012. The wind damage risk was determined using the critical wind speed of 10m/s under the assumption that the fruit of a pear variety Mansamgil would begin to drop at 10 m/s. The results indicated that the Weibull distribution was more effective than the normal distribution for the estimation error probability distribution for assessing wind damage risk.
The sea surface wind field has long been obtained from satellite scatterometers or passive microwave radiometers. However, the importance of satellite altimeter-derived wind speed has seldom been addressed because of the outstanding capability of the scatterometers. Satellite altimeter requires the accurate wind speed data, measured simultaneously with sea surface height observations, to enhance the accuracy of sea surface height through the correction of sea state bias. This study validates the wind speeds from the satellite altimeters (GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) and analyzes characteristics of errors. In total, 1504 matchup points were produced using the wind speed data of Ieodo Ocean Research Station (IORS) and of Korea Meteorological Administration (KMA) buoys at Marado and Oeyeondo stations for 10 years from December 2007 to May 2016. The altimeter wind speed showed a root mean square error (RMSE) of about $1.59m\;s^{-1}$ and a negative bias of $-0.35m\;s^{-1}$ with respect to the in-situ wind speed. Altimeter wind speeds showed characteristic biases that they were higher (lower) than in-situ wind speeds at low (high) wind speed ranges. Some tendency was found that the difference between the maximum and minimum value gradually increased with distance from the buoy stations. For the improvement of the accuracy of altimeter wind speed, an equation for correction was derived based on the characteristics of errors. In addition, the significance of altimeter wind speed on the estimation of sea surface height was addressed by presenting the effect of the corrected wind speeds on the sea state bias values of Jason-1.
Kim, Soo-Ock;Kim, Jin-Hee;Kim, Dae-Jun;Yun, Jin I.
Korean Journal of Agricultural and Forest Meteorology
/
v.14
no.4
/
pp.277-282
/
2012
When wind speed exceeds a certain threshold, daily minimum temperature does not drop as predicted by the geospatial model in a cold pooling catchment. A linear regression equation was derived to explain the warming effect of wind speed on daily minimum temperature by analyzing observations at a low lying location within an enclosed catchment. The equation, Y=2X+0.4 ($R^2$=0.76) where Y stands for the warming ($^{\circ}C$) and X for the mean horizontal wind speed (m/s) at 2m height, was combined to an existing model to predict daily minimum temperature across an enclosed catchment on cold pooling days. The adjusted model was applied to 3 locations submerged in a cold air pool to predict daily minimum temperature on 25 cold pooling days with the input of simulated wind speed at each location. Results showed that bias (mean error) was reduced from -1.33 to -0.37 and estimation error (RMSE) from 1.72 to 1.20, respectively, in comparison with those from the unadjusted model.
기후변화의 주요인이 되는 온실가스 감축을 목표로 화석연료를 대체하기 위한 대체 에너지 개발을 위한 많은 노력이 진행되고 있다. 풍력 에너지와 같은 신재생에너지는 이러한 하나의 해결 수단이 될 수 있으며 풍력 에너지 사업의 활성화를 위해서는 정확한 풍력 정보 제공이 우선이다. 풍력-기상자원지도는 풍력 발전에 유용한 정보 제공을 위한 목적으로 중규모 수치 모델을 이용하여 작성된다. 본 연구에서는 중규모 수치 모델의 정확도 향상을 위한 자료동화 방법으로써 Four-Dimensional Data Assimilation (FDDA) 방법을 이용한다. 풍력-기상자원지도는 공간분해능 1 km 해상도로 개발된다. 풍력-기상자원지도는 1998-2008년까지의 평균적인 상태에 대하여 모의를 하기 위하여 통계적인 방법으로 11년 기간의 평균과 유사한 기간을 선정하였다. 풍력-기상자원지도는 연 평균, 월 평균 풍속과 주 풍향, 주풍향 발생 비율 등의 정보를 제공한다. 우리나라 풍속의 평균 분포는 내륙 산악지역, 남해안, 제주도에서 강풍이 발생하며 주 풍향은 대체로 북서풍이다. 주 풍향의 발생비율은 산악 지역과 남 동해안에서 높아 풍력 발전의 최적지 정보를 제공한다. 1 km 해상도의 모델과 관측의 오차는 서해안 등의 해안지역보다 강원 산악지역에서 오차가 더욱 증가하였다. 이러한 산악 지역의 오차는 복잡한 지형에서는 1km 미만의 수 백 m 해상도 수치모의가 필요함을 지시한다. 따라서 본 연구에서는 WRF-LES 모형을 이용하여 333m 해상도의 기상자원지도를 개발한다. 333m 해상도의 자원지도 영역은 강원도 지역에 대하여 모의되었다. 333m 해상도의 풍속 분포는 1km 해상도의 풍속 분포와 비교하였을 때 풍속의 분포가 보다 세밀하게 표현되었다. 정량적인 검증을 하였을 때 관측소에 따라 차이는 있었으나 1km 해상도에서 과대 모의된 풍속의 분포가 현저히 개선이 되었으며, 시간적인 경향도 잘 일치함을 보였다.
Journal of the Korean Data and Information Science Society
/
v.27
no.6
/
pp.1601-1607
/
2016
Recently, weather information has been increasingly used in various area. This study presents the necessity of hourly weather information for electricity demand forecasting through correlation analysis and multivariate regression model. Hourly weather data were collected by Meteorological Administration. Using electricity demand data, we considered TBATS exponential smoothing model with a sliding window method in order to forecast electricity demand. In this paper, we have shown that the incorporation of weather infromation into electrocity demand models can significantly enhance a forecasting capability.
인공위성 SAR센서는 기존 산란계 해상풍 자료의 낮은 해상도로 인한 여러 한계를 극복함으로써 다양한 해양연구에 있어 필요성과 활용영역이 넓어지고 있다. 이러한 추세에 따라 전세계적으로 다파장 SAR 센서들이 운용 또는 발사 예정에 있음에도 불구하고 현재까지 한반도 주변해에 대한 SAR 해상풍 산출 연구는 C밴드에만 한정되어왔다. 본 연구에서는 L밴드 해상풍 추출알고리즘을 적용하여 L밴드 SAR 영상으로부터 한반도 주변해의 해상풍을 추출하고 산란계 해상풍 자료와 비교 분석을 통해 정확도 특성을 제시하고자 하였다. 2007년 8월 우리나라 동해 지역을 관측한 L밴드 ALOS PALSAR 영상에 대해 L밴드 HH편광 GMF 알고리즘을 적용하여 해상풍을 산출하였다. 산출 해상풍은 동일시점의 산란계 QuikSCAT 자료와 공간적으로 유사한 패턴을 보였으며 두 자료 간의 풍속오차는 3.45m/s로 나타났다. 연구 해역과 같이 강한 바람 범위에서는 산출 해상풍 간의 차이가 크게 나타나며 풍향으로 인한 오차특성이 보인다. 특히 풍속의 경우, 산란계 해상풍이 중간바람 범위에 집중된 것에 비해 L밴드 SAR 산출 해상풍은 강한 바람 범위까지 포함하는 넓은 풍속값 범위를 나타냈다.
Journal of the Korea Society of Computer and Information
/
v.20
no.3
/
pp.19-27
/
2015
Technologies of wind power generation for development of alternative energy technology have been accumulated over the past 20 years. Wind power generation is environmentally friendly and economical because it uses the wind blowing in nature as energy resource. In order to operate wind power generation efficiently, it is necessary to accurately predict wind speed changing every moment in nature. It is important not only averagely how well to predict wind speed but also to minimize the largest absolute error between real value and prediction value of wind speed. In terms of generation operating plan, minimizing the largest absolute error plays an important role for building flexible generation operating plan because the difference between predicting power and real power causes economic loss. In this paper, we propose a method of wind speed prediction using numeric prediction algorithm-based wind speed forecast model made to analyze the wind speed forecast given by the Meteorological Administration and pattern value for considering seasonal property of wind speed as well as changing trend of past wind speed. The wind speed forecast given by the Meteorological Administration is the forecast in respect to comparatively wide area including wind generation farm. But it contributes considerably to make accuracy of wind speed prediction high. Also, the experimental results demonstrate that as the rate of wind is analyzed in more detail, the greater accuracy will be obtained.
Proceedings of the Korean Environmental Sciences Society Conference
/
2003.11b
/
pp.150-153
/
2003
본 연구결과에서 측정기간 동안 측정기별로 상당한 농도차이를 나타낸 기간을 살펴보면 풍속이 높았던 것으로 분석되었다. 따라서, 기상요소 중 풍속은 미세분진의 측정시 유입속도에 영향을 일으켜 부유분진 측정농도에 오차를 야기 시킬 수 있는 것으로 생각할 수 있다. 결론적으로 건강유해 영향을 일으킬 수 있는 미세분진의 측정에 다양한 측정기가 사용될 수 있지만, 측정장소의 환경적 요소인 실내 및 실외환경뿐만 아니라 풍속같은 기상요소를 고려하여 측정기를 선택하여야 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.