DOI QR코드

DOI QR Code

Wind Effect on the Distribution of Daily Minimum Temperature Across a Cold Pooling Catchment

냉기호 형성 집수역의 일 최저기온 분포에 미치는 바람효과

  • Kim, Soo-Ock (National Center for Agro-Meteorology, Seoul National University) ;
  • Kim, Jin-Hee (National Center for Agro-Meteorology, Seoul National University) ;
  • Kim, Dae-Jun (National Center for Agro-Meteorology, Seoul National University) ;
  • Yun, Jin I. (College of Life Sciences, Kyung Hee University)
  • Received : 2012.11.27
  • Accepted : 2012.12.10
  • Published : 2012.12.30

Abstract

When wind speed exceeds a certain threshold, daily minimum temperature does not drop as predicted by the geospatial model in a cold pooling catchment. A linear regression equation was derived to explain the warming effect of wind speed on daily minimum temperature by analyzing observations at a low lying location within an enclosed catchment. The equation, Y=2X+0.4 ($R^2$=0.76) where Y stands for the warming ($^{\circ}C$) and X for the mean horizontal wind speed (m/s) at 2m height, was combined to an existing model to predict daily minimum temperature across an enclosed catchment on cold pooling days. The adjusted model was applied to 3 locations submerged in a cold air pool to predict daily minimum temperature on 25 cold pooling days with the input of simulated wind speed at each location. Results showed that bias (mean error) was reduced from -1.33 to -0.37 and estimation error (RMSE) from 1.72 to 1.20, respectively, in comparison with those from the unadjusted model.

냉기호 지대 안에서도 일정 수준의 바람이 부는 장소에서는 일 최저기온이 기존 공간기후모형에 의해 예측된 만큼 떨어지지 않음이 관찰되었다. 경남 하동군 악양 집수역 출구부근의 실측자료를 토대로 냉기호가 형성된 25일에 대하여 기존 방법에 의한 일 최저기온 예측 시 발생하는 추정오차를 그 때 관측된 풍속과 비교한 결과 바람이 강해질수록 추정오차가 커지는 경향이 뚜렷해서 풍속이 2m/s에 이르면 냉기호 효과가 완전히 소멸되는 것으로 나타났다. 풍속과 추정오차 간 관계는 Y=2X+0.4 ($R^2$=0.76)로 표현되며 이 식에서 Y는 추정오차($^{\circ}C$), X는 풍속(m/s)이다. 이 식을 기존 일 최저기온 추정모형의 냉기집적효과에 결합하여 악양 집수역 냉기호 수몰지역에 위치한 3곳의 일 최저기온 추정에 이용하였다. 이때 입력 풍속은 바람장 모형 구동에 의한 모의풍속이었다. 추정된 일 최저기온은 오차의 평균평방근(RMSE)이 기존 모형의 1.72에서 1.20으로 줄어들고, 평균오차(ME)로 표현한 편기성(bias)도 -1.33에서 -0.37로 개선되었다.

Keywords

References

  1. Chung, U., H. H. Seo, K. H. Hwang, B. S. Hwang, J. Choi, J. T. Lee, and J. I. Yun, 2006: Minimum temperature mapping over complex terrain by estimating cold air accumulation potential. Agricultural and Forest Meteorology 137, 15-24. https://doi.org/10.1016/j.agrformet.2005.12.011
  2. Daly, C., D. R. Conklin, and M. H. Unsworth, 2009: Local atmospheric decoupling in complex topography alters climate change impacts. International Journal of Climatology 30, 1857-1864.
  3. Dorninger, M., C. D. Whiteman, B. Bica, S. Eisenbach, B. Pospichal, and R. Steinacker, 2011: Meteorological events affecting cold-air pools in a small basin. American Meteorological Society 50, 2223-2234.
  4. Kim, S. O., and J. I. Yun, 2011: A quantification method for the cold pool effect on nocturnal temperature in a closed catchment. Korean Journal of Agricultural and Forest Meteorology 13(4), 176-184. (in Korean with English abstract) doi:10.5532/KJAFM.2011.13.4.176
  5. Lopes, A. M. G., 2003: Wind Station - a software for the simulation of atmospheric flows over complex topography. Environmental Modelling and Software 18, 81-96. https://doi.org/10.1016/S1364-8152(02)00024-5
  6. Lopes, A. M. G., 2011: WindStation version 2.0.7 User's Manual. 47pp.
  7. Rakovec, J., J. Merse, S. Jernej, and B. Paradiz, 2002: Turbulent dissipation of the cold-air pool in a basin: Comparison of observed and simulated development. Meteorology and Atmospheric Physics 79, 195-213. https://doi.org/10.1007/s007030200003
  8. Stigter, K., 2010: Applied Agrometeorology. Springer Inc., 1100pp.
  9. Yun, J. I., 2010: Agroclimatic maps augmented by a GIS technology. Korean Journal of Agricultural and Forest Meteorology 12, 63-73. (In Korean with English abstract) https://doi.org/10.5532/KJAFM.2010.12.1.063
  10. Zhong, S., X. Bian, and C. D. Whiteman, 2003: Time scale for cold-air pool breakup by turbulent erosion. Meteorologische Zeitschrift 12, 229-233. https://doi.org/10.1127/0941-2948/2003/0012-0231

Cited by

  1. Implementation of a Real-time Data Display System for a Catchment Scale Automated Weather Observation Network vol.15, pp.4, 2013, https://doi.org/10.5532/KJAFM.2013.15.4.304
  2. Distribution of Midday Air Temperature and the Solar Irradiance Over Sloping Surfaces under Cloudless Condition vol.15, pp.4, 2013, https://doi.org/10.5532/KJAFM.2013.15.4.291
  3. Feasibility of the Lapse Rate Prediction at an Hourly Time Interval vol.18, pp.1, 2016, https://doi.org/10.5532/KJAFM.2016.18.1.55
  4. A Feasibility Study of a Field-specific Weather Service for Small-scale Farms in a Topographically Complex Watershed vol.17, pp.4, 2015, https://doi.org/10.5532/KJAFM.2015.17.4.317