• Title/Summary/Keyword: 표준정규식생지수

Search Result 7, Processing Time 0.022 seconds

A Study of Spring Drought Using Terra MODIS Satellite Image - For the Soyanggang Dam Watershed - (Terra MODIS 위성영상을 이용한 봄 가뭄 연구 - 소양강댐유역을 대상으로 -)

  • SHIN, Hyung-Jin;PARK, Min-Ji;HWANG, Eui-Ho;CHAE, Hyo-Sok;PARK, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.145-157
    • /
    • 2015
  • In 2015, drought was at the worst stage of devastation in Soyanggang Dam watershed. The purpose of this study is to trace the drought area around Soyanggang dam watershed by using Terra MODIS image because it has the ability of spatio-temporal dynamics. The MODIS indices, which included the enhanced vegetation index (NDVI), were extracted from MODIS product MOD13 16-day composite datasets with a spatial resolution of 250m from 2010.01.01 to 2015.06.30. We found that application of Vegetation Condition Index (VCI) and Standardized Vegetation Index (SVI) was suitable for monitoring the drought area. The result can be used to acquire the drought data scattered and demonstrate the potential for the use of MODIS data for temporal and spatial detection of drought effects.

Application of Evaporative Stress Index (ESI) for Satellite-based Agricultural Drought Monitoring in South Korea (위성영상기반 농업가뭄 모니터링을 위한 Evaporative Stress Index (ESI)의 적용)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Lee, Hee-Jin;Tadesse, Tsegaye;Wardlow, Brian D.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.405-409
    • /
    • 2018
  • 최근 기후변화로 인해 기온, 강수량 등 농업에 직접적인 영향을 주는 환경요인의 변화가 급격하게 진행되고 있으며, 식량농업기구 (Food and Agriculture Organization of the United Nations, FAO)는 기후변화로 인해 전 세계적인 식량위기가 발생할 가능성이 크다고 경고하고 있다. 농업 시스템의 생산 능력을 확보하기 위해 수자원의 효율적인 공급 및 분배, 수확량 예측, 토지 특성 파악 등 농업 생산 제한요소에 대한 빠른 정보수집이 요구되고 있다. 재해관리 분야에서 원격탐사 기술은 재해 발생을 인지하고 발생지역의 재해 진행과 피해 정도를 신속하게 제공할 수 있다는 점에서 효용성이 높다. 또한 위성 영상을 이용할 경우 접근이 용이하지 못한 지역의 조사가 수월하며, 장기적인 변화관측이나 환경감시 등 광역적 접근이 가능하다. 최근 위성영상을 통한 다양한 신호의 데이터 취득 및 가공이 가능하게 됨에 따라 주기적이고 동일한 정확도로 지상자료의 획득이 가능하다는 측면에서 인공위성을 활용한 농업 분야에서의 가뭄 분석 연구의 필요성이 대두되었다. 위성영상 신호를 통해 농업 가뭄에 활용되고 있는 지표로는 정규식생지수 (Normalized Difference Vegetation Index, NDVI) 및 식생상태지수 (Vegetation Condition Index, VCI), 식생가뭄반응지수(Vegetation Drought Response Index, VegDRI) 등이 있다. 잠재 증발산과 실제 증발산의 비를 이용한 위성영상기반의 가뭄지수인 Evaporative Stress Index (ESI)는 일반적으로 사용되는 가뭄지수인 표준강수지수(Standardized Precipitation Index, SPI), 파머가뭄심도지수 (Palmer Drought Severity Index, PDSI) 등과 비교하였을 때, 가뭄에 더 민감하고 빠른 반응을 보인다는 연구 결과로부터 짧은 기간의 급속하게 발생하는(rapid-onset) Flash drought의 가뭄판단지표로 활용되고 있다. 본 연구에서는 과거 우리나라에 발생했던 극심한 가뭄 사상을 대상으로 ESI의 가뭄분석을 통해 타 지표와의 차별성을 확인하고 농업 가뭄 모니터링의 새로운 지표로써 적용성을 검토하고자 한다.

  • PDF

Estimation of Drought Index Using CART Algorithm and Satellite Data (CART기법과 위성자료를 이용한 향상된 공간가뭄지수 산정)

  • Kim, Gwang-Seob;Park, Han-Gyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.128-141
    • /
    • 2010
  • Drought indices such as SPI(Standard Precipitation Index) and PDSI(Palmer Drought Severity Index) estimated using ground observations are not enough to describe detail spatial distribution of drought condition. In this study, the drought index with improved spatial resolution was estimated by using the CART algorithm and ancillary data such as MODIS NDVI, MODIS LST, land cover, rainfall, average air temperature, SPI, and PDSI data. Estimated drought index using the proposed approach for the year 2008 demonstrates better spatial information than that of traditional approaches. Results show that the availability of satellite imageries and various associated data allows us to get improved spatial drought information using a data mining technique and ancillary data and get better understanding of drought condition and prediction.

Analysis of Agricultural Drought Characteristics using Vegetation Drought Response Index (VegDRI) in North Korea (식생가뭄반응지수 (Vegetation Drought Response Index, VegDRI)를 활용한 북한지역의 농업가뭄 특성 분석)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Tadesse, Tsegaye;Wardlow, Brian D.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.364-364
    • /
    • 2019
  • 최근 전세계적으로 기후변화로 인한 국내외 가뭄에 대한 피해 및 발생 빈도가 점차 증가하고 있으며, 우리나라의 경우 2000년대 이후 가뭄 주기가 점점 짧아져 2013년 이후 매년 가뭄이 발생하고 있다. 북한은 자연재해에 취약한 국가이며 특히 가뭄으로 인한 식량난 문제가 대두되고 있지만, 북한의 제한적인 정보로 인해 북한 지역에서의 가뭄의 발생과 피해 정보는 한정적이고, 활용할 수 있는 자료의 경우 외국 기관의 정보에 의존하는 실정이다. 향후 농업부문에 대한 대북한 지원과 통일 후를 대비한 농업정책의 수립을 위하여 북한의 가뭄에 대하여 독자적으로 신속한 정보를 취득, 분석할 수 있는 능력을 확보하는 것이 필요하다. 위성영상을 이용한 원격탐사 기술은 접근이 용이하지 못한 지역의 주기적인 관측이 가능하며, 동일한 정확도로 기상자료의 획득이 가능하다. Vegetation Drought Response Index (VegDRI)는 위성영상기반의 가뭄지수인 정규식생지수(Nomalized Difference Vegetation Index, NDVI), 기상학적 가뭄지수를 활용한 기후적 요소, 토지피복 및 생태지역 등의 생물물리학적 요소를 활용한 가뭄지표이다. 본 연구에서는 MODerate resolution Imaging Spectroradiometer (MODIS) 위성의 MOD13Q1 영상자료의 NDVI (2001~2018년)를 이용하였으며, 북한의 기상자료를 이용한 표준강수지수 (Standardized Precipitation Index, SPI)와 파머가뭄심도지수 (Palmer Drought Severity Index, PDSI), 그리고 북한 지역의 토지피복 및 생태지역 등의 요소들을 활용한 VegDRI를 통하여 북한의 가뭄 시기에 따른 시도별 가뭄 특성에 대하여 분석하고자 한다.

  • PDF

The Study of Land Surface Change Detection Using Long-Term SPOT/VEGETATION (장기간 SPOT/VEGETATION 정규화 식생지수를 이용한 지면 변화 탐지 개선에 관한 연구)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, In-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.111-124
    • /
    • 2010
  • To monitor the environment of land surface change is considered as an important research field since those parameters are related with land use, climate change, meteorological study, agriculture modulation, surface energy balance, and surface environment system. For the change detection, many different methods have been presented for distributing more detailed information with various tools from ground based measurement to satellite multi-spectral sensor. Recently, using high resolution satellite data is considered the most efficient way to monitor extensive land environmental system especially for higher spatial and temporal resolution. In this study, we use two different spatial resolution satellites; the one is SPOT/VEGETATION with 1 km spatial resolution to detect coarse resolution of the area change and determine objective threshold. The other is Landsat satellite having high resolution to figure out detailed land environmental change. According to their spatial resolution, they show different observation characteristics such as repeat cycle, and the global coverage. By correlating two kinds of satellites, we can detect land surface change from mid resolution to high resolution. The K-mean clustering algorithm is applied to detect changed area with two different temporal images. When using solar spectral band, there are complicate surface reflectance scattering characteristics which make surface change detection difficult. That effect would be leading serious problems when interpreting surface characteristics. For example, in spite of constant their own surface reflectance value, it could be changed according to solar, and sensor relative observation location. To reduce those affects, in this study, long-term Normalized Difference Vegetation Index (NDVI) with solar spectral channels performed for atmospheric and bi-directional correction from SPOT/VEGETATION data are utilized to offer objective threshold value for detecting land surface change, since that NDVI has less sensitivity for solar geometry than solar channel. The surface change detection based on long-term NDVI shows improved results than when only using Landsat.

On Using Near-surface Remote Sensing Observation for Evaluation Gross Primary Productivity and Net Ecosystem CO2 Partitioning (근거리 원격탐사 기법을 이용한 총일차생산량 추정 및 순생태계 CO2 교환량 배분의 정확도 평가에 관하여)

  • Park, Juhan;Kang, Minseok;Cho, Sungsik;Sohn, Seungwon;Kim, Jongho;Kim, Su-Jin;Lim, Jong-Hwan;Kang, Mingu;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.251-267
    • /
    • 2021
  • Remotely sensed vegetation indices (VIs) are empirically related with gross primary productivity (GPP) in various spatio-temporal scales. The uncertainties in GPP-VI relationship increase with temporal resolution. Uncertainty also exists in the eddy covariance (EC)-based estimation of GPP, arising from the partitioning of the measured net ecosystem CO2 exchange (NEE) into GPP and ecosystem respiration (RE). For two forests and two agricultural sites, we correlated the EC-derived GPP in various time scales with three different near-surface remotely sensed VIs: (1) normalized difference vegetation index (NDVI), (2) enhanced vegetation index (EVI), and (3) near infrared reflectance from vegetation (NIRv) along with NIRvP (i.e., NIRv multiplied by photosynthetically active radiation, PAR). Among the compared VIs, NIRvP showed highest correlation with half-hourly and monthly GPP at all sites. The NIRvP was used to test the reliability of GPP derived by two different NEE partitioning methods: (1) original KoFlux methods (GPPOri) and (2) machine-learning based method (GPPANN). GPPANN showed higher correlation with NIRvP at half-hourly time scale, but there was no difference at daily time scale. The NIRvP-GPP correlation was lower under clear sky conditions due to co-limitation of GPP by other environmental conditions such as air temperature, vapor pressure deficit and soil moisture. However, under cloudy conditions when photosynthesis is mainly limited by radiation, the use of NIRvP was more promising to test the credibility of NEE partitioning methods. Despite the necessity of further analyses, the results suggest that NIRvP can be used as the proxy of GPP at high temporal-scale. However, for the VIs-based GPP estimation with high temporal resolution to be meaningful, complex systems-based analysis methods (related to systems thinking and self-organization that goes beyond the empirical VIs-GPP relationship) should be developed.

Stand Volume Estimation of Pinus Koraiensis Using Landsat TM and Forest Inventory (Landsat TM 영상과 현장조사를 이용한 잣나무림 재적 추정)

  • Park, Jin-Woo;Lee, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.1
    • /
    • pp.80-90
    • /
    • 2014
  • The objective of this research is to estimate the stand volume of Pinus koraiensis, by using the investigated volume and the information of remote sensing(RS), in the research forest of Kangwon National University. The average volume of the research forest per hectare was $307.7m^3/ha$ and standard deviation was $168.4m^3/ha$. Before and after carrying out 3 by 3 majority filtering on TM image, eleven indices were extracted each time. Independent variables needed for linear regression equation were selected using mean pixel values by indices. The number of indices were eleven: six Bands(except for thermal Band), NDVI, Band Ratio(BR1:Band4/Band3, BR2:Band5/Band4, BR3:Band7/Band4), Tasseled Cap-Greeness. As a result, NDVI and TC G were chosen as the most suitable indices for regression before and after filtering, and R-squared was high: 0.736 before filtering, 0.753 after filtering. As a result of error verification for an exact comparison, RMSE before and after filtering was about $69.1m^3/ha$, $67.5m^3/ha$, respectively, and bias was $-12.8m^3/ha$, $9.7m^3/ha$, respectively. Therefore, the regression conducted with filtering was selected as an appropriate model because of low RMSE and bias. The estimated stand volume applying the regression was $160,758m^3$, and the average volume was $314m^3/ha$. This estimation was 1.2 times higher than the actual stand volume of Pinus koraiensis.