• 제목/요약/키워드: 표적분할

검색결과 54건 처리시간 0.024초

표적 추출을 위한 적응적 가중치 기반 FLIR 및 CCD 센서 영상 융합 알고리즘 (FLIR and CCD Image Fusion Algorithm Based on Adaptive Weight for Target Extraction)

  • 구은혜;이은영;김세윤;조웅호;김희수;박길흠
    • 한국멀티미디어학회논문지
    • /
    • 제15권3호
    • /
    • pp.291-298
    • /
    • 2012
  • 일반적인 ATR시스템에서는 대부분 FLIR센서에 의존하여 영상을 획득하나, 표적의 경계가 모호한 경우 견실한 표적 분할을 보장할 수 없는 한계점이 있다. 이에 본 논문은 FLIR과 CCD센서를 통해 획득된 영상에 대한 적응적 가중치 기반의 융합 방법을 제안함으로써 보다 정확한 표적 분할 성능을 재현한다. 융합을 위한 FLIR영상의 가중치는 모호한 경계를 구분하기 위한 bi-modality 척도와 표적 경계와의 거리를 통해 결정되고, CCD영상의 가중치는 표적과 배경의 질감차이를 나타내는 질감 척도와 거리 척도를 통해 도출된다. 제안 방법의 타당성 검증을 위하여 다양한 환경에서 획득된 표적 영상에 대한 제안 방법과 단일 센서 기반의 표적 분할의 성능 비교를 수행하였다.

은닉표적의 분할을 위한 실시간 Graphic User Interface 구현에 관한 연구 (A study on Real-time Graphic User Interface for Hidden Target Segmentation)

  • 염석원
    • 융합신호처리학회논문지
    • /
    • 제17권2호
    • /
    • pp.67-70
    • /
    • 2016
  • 본 논문에서 8mm 파장영역에서 획득한 수동형 밀리미터파 영상을 이용하여 위험물체를 은닉한 대상으로부터 금속표적(권총)을 자동으로 분할하고 식별하는 실시간 그래픽 사용자 인터페이스(Graphic User Interface)를 구현한다. 은닉된 표적의 분할 방법은 다단계 영상 분할 방법을 이용한다. 다단계 영상 분할의 각 단계는 밀리미터파 영상의 히스토그램을 가우시안 혼합 모델(Gaussian Mixture Model)로 가정하고 LBG 양자화(Vector-Quantization)과 추정(Expectation)-최대화(Maximization) 알고리즘으로 구성된다. 첫 번째 단계에서 배경으로부터 몸체 영역을 분할하고 두 번째 단계에서 몸체로부터 은닉된 물체 영역을 순차적으로 분할한다. 실험 및 시뮬레이션에서는 그래픽 사용자 인터페이스 프로그램을 이용하여 분석된 결과를 보여준다.

히스토그램 현 탐색방식에 의한 레이다 표적 분할 알고리즘 (Radar Target Segmentation via Histogram Chord Search Method)

  • 최병관;김환우
    • 대한전자공학회논문지SP
    • /
    • 제42권6호
    • /
    • pp.195-202
    • /
    • 2005
  • 적응 분할 알고리즘은 국부 비 균질 영상에서 효율적인 표적 탐지를 위해 사용된다. 지금까지 영상 분할에 여러 가지 적응방법이 제안되었다. 하지만 이들 알고리즘이 레이다 표적 탐지에 바로 적용하기는 어려운데 이는, 레이다 자체 신호 특성 때문이다. 일반적으로 레이다 표적은 배경신호에 비해 상대적으로 적은 도수 함수를 갖고 있으며, 배경 분포는 외부환경에 따라 다양한 형태를 갖는다. 본 논문에서는 도수함수의 최대 값에서 우측 하향 직선인 히스토그램 현을 이용한 적응 표적분할 알고리즘을 제안한다. 제안한 방식은 임계값 탐색에 사용되는 적용 현이 외부환경조건에 영향을 적게 받음으로 인해 다양한 레이다 환경에 최적인 임계 값을 선택한다. 시뮬레이션 결과, 제안한 알고리즘이 기존 표적분할알고리즘인 전역 임계 값 방법 및 분포 중앙값 추정방식에 비해 탐지성능측면에서 우수함을 보였다.

최대 컨트라스트 값을 이용한 4분할 CBD의 잔향 감소기법 (Four Segmentalized CBD Method Using Maximum Contrast Value to Improve Detection in the Presence of Reverberation)

  • 최준혁;윤경식;이수형;권범수;이균경
    • 한국음향학회지
    • /
    • 제28권8호
    • /
    • pp.761-767
    • /
    • 2009
  • 본 논문에서는 중 주파수의 송신신호를 사용하는 선체 고정형 소나에서 잔향에 의한 오경보 확률 (False Alarm Probability)을 감소시켜 표적의 탐지확률을 향상시키는 통계적 분할 기반 특성의 4분할 컨트라스트 박스 탐지기 (4-Segmentalized Contrast Box Detector, 4SBBD) 를 제안한다. 표적과 잔향이 인접하여 존재하는 경우 두 신호의 통계적 특성이 유사하여 표적 신호와 잔향을 분리 하지 못하는 단점을 가지는 기존의 컨트라스트 박스 탐지기를 개선하기 위하여 컨트라스트 박스를 4분할 하였으며, 선체 고정형 소나에서 획득된 실측 잔향 데이터와 합성 표적 신호를 이용하여 제안한 기법의 타당성을 검증한다.

관심영역 추출과 통합에 의한 적외선 영상 분할 (Infrared Image Segmentation by Extracting and Merging Region of Interest)

  • 염석원
    • 한국지능시스템학회논문지
    • /
    • 제26권6호
    • /
    • pp.493-497
    • /
    • 2016
  • 적외선 영상은 야간에 표적의 탐지가 가능하여 보완과 감시분야에 활용도가 높다. 그러나 가시광선 영상에 비하여 해상도가 낮고 잡음의 영향이 크다는 단점이 있다. 본 논문에서는 적외선 영상의 표적을 분할하는 방법을 연구한다. 표적을 포함하는 다수의 관심영역(Region of Interest)을 다단계 분할 방법을 이용하여 추출하고 관심영역을 입력영상으로 다단계 분할방법을 다시 적용하여 표적을 분할한다. 다단계 분할 방법의 각 단계는 가우시안 혼합모델의 파라미터를 초기화 하고 추정하는 k-means 클러스터링(Clustering)과 EM(Expectation-Maximization) 알고리즘과 추정된 사후확률을 이용하여 각 화소의 클러스터를 결정하는 단계로 구성된다. 본 논문에서 추출된 관심영역을 선택하고 통합하는 방법을 제안한다. 관심영역의 통합은 근접한 모든 관심영역의 윈도우를 포함하도록 이루어진다. 실험에서는 야간의 보행자로부터 획득한 적외선 영상에 제안된 방법을 적용하고 다른 분할 방법과 비교하여 제안한 방법이 우수함을 보인다.

소형 표적 검출을 위한 히스토그램 기반의 영상분할 기법 연구 (A Study on Image Segmentation Method Based on a Histogram for Small Target Detection)

  • 양동원;강석종;윤주홍
    • 한국멀티미디어학회논문지
    • /
    • 제15권11호
    • /
    • pp.1305-1318
    • /
    • 2012
  • 영상분할은 영상 처리 및 패턴 인식에서 매우 어려운 전처리 과정 중 하나이다. 일반적으로는 단순하고 구현이 쉽기 때문에 OTSU의 방법이 많이 사용되고 있지만, 영상의 히스토그램이 단일 분포를 갖거나 단일 분포에 가까울 경우에는 영상 분할이 정확히 되지 못한다. 또한, 만일 표적이 영상에 비해서 소형인 경우 표적의 히스토그램 분포가 작아져서 단일 분포에 가까워진다. 본 논문에서는 소형 표적 검출을 위한 개선된 영상 분할 기법을 제안하였다. 단일 분포 히스토그램의 단점을 극복하기 위하여 배경 히스토그램의 영향을 감소시키는 기법을 적용하였으며, SNR을 높이기 위하여 지역 평균화 기법을 1D OTSU에 적용하였다. 실제 열 영상을 기반으로 실험을 수행한 결과 2D OTSU 방법에 비해서 연산 시간은 크게 줄었으며, 영상 분할 결과는 개선되었음을 확인하였다.

무인 감시시스템을 위한 DMAM기반의 표적 추적 (DMAM Based Target Tracking for Automatic Surveillance System)

  • 강이철;제성관;강민경;차의영
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2000년도 추계학술발표논문집
    • /
    • pp.147-150
    • /
    • 2000
  • 본 논문은 무인감시 시스템의 특성상 조명 상태의 변화나 카메라의 흔들림과 같은 환경의 변화에 적응할 수 있도록 연속된 세 프레임간의 차영상를 이용하는 방법을 적용하여 움직임 정보를 추출하고, 영역의 분할 및 특징점 추출을 수행한 후에, 인공 신경회로망 기법을 적용하여 이동표적을 추적한다. 추적시에는 추출된 각각의 표적간의 데이터 연결을 움직임 정보의 특징점들을 이용, 레이블링하여 각각의 표적을 연결시켜 추적의 성능을 높였다.

  • PDF

표적분할 신뢰도 값 기반의 형태특징과 지역특징을 이용한 차량표적 분류기법 연구 (A Study on Vehicle Target Classification Method Using Both Shape and Local Features with Segmentation Reliability)

  • 양동원;이용헌;곽동민
    • 한국군사과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.40-47
    • /
    • 2017
  • To classify the vehicle targets automatically using thermal images, there are usually two main categories of feature extraction method, local and shape feature extraction methods. Since thermal images have less texture information than color images, the shape feature extraction method is useful when the segmentation results are correct. However, if there are some errors in target segmentation, the shape feature may contain some errors, then the classification accuracy can be decreased. To overcome these problems, in this paper, we propose the segmentation reliability estimation method for target classification. The segmentation reliability can be estimated by using the difference information of average intensities and edge energies between the target and the background area. The estimated segmentation reliability is applied in the decision level fusion method of classification results using both shape and local features. Experiment results using the thermal images of the vehicle targets (main battle tank, armored personnel carrier, military truck, and an estate car) show that the proposed classification method and the segmentation reliability estimation method have a good performance in classification accuracy.

복잡한 배경영상에서 효과적인 전처리 방법을 이용한 표적 중심 추적기 (Efficient Preprocessing Method for Binary Centroid Tracker in Cluttered Image Sequences)

  • 조재수
    • 한국항행학회논문지
    • /
    • 제10권1호
    • /
    • pp.48-56
    • /
    • 2006
  • 본 논문에서는 복잡한 배경영상에서 움직이는 물체를 자동으로 추적하는 표적중심 추적기의 효과적인 전처리 방법을 제안하였다. 이진 표적중심 추적기의 성능은 다음과 같은 요소가 추적성능을 좌우한다: (1) 효과적인 실시간 전처리 방법 (2) 복잡한 배경영상에서의 정확한 표적 추출방법 (3) 지능적인 표적창 크기 조절법. 본 논문에서 제안하는 표적중심 추적기는 배경과 움직이는 표적을 좀 더 쉽게 판별할 수 있도록 추적필터를 이용한 효과적인 실시간 전처리 방법에 의한 적응적인 표적분할방법을 사용한다. 효과적인 전처리 방법이란 추적필터에 의해 추정된 표적중심을 중심으로 입력영상에 다른 가중치를 줌으로써 표적과 배경을 더 쉽게 분리할 수 있다. 제안한 방법은 합성영상 및 실제 적외선 영상을 이용한 다양한 추적실험을 통하여 그 효용성 및 성능을 검증하였다.

  • PDF

국부적 특성의 Bi-modality와 Chamfer 거리를 이용한 FLIR 영상의 표적 추출 (Target extraction in FLIR image using Bi-modality of local characteristic and Chamfer distance)

  • 이희열;김세윤;김종환;곽동민;최병재;주영복;박길흠
    • 한국지능시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.304-310
    • /
    • 2009
  • 본 논문은 bi-modality와 근접성(adjacency)을 고려하여 멤버쉽 값(membership value)을 결정하는 퍼지 임계화(fuzzy thresholding)에 기반한 FLIR(forward-looking infrared) 영상에서의 표적 추출 방법을 제안한다. Bi-modality는 국부 영역의 화소값 분포를 이용한 것으로 화소가 표적 부분으로 분류되는 정도를 나타내고, Adjacency는 각 화소가 표적 영역으로 부터 얼마나 떨어져 있는지를 나타내는 척도이다. 이 두 가지 척도를 이용하여 멤버쉽 값을 계산한 후, 퍼지 임계화 방법으로 표적을 추출한다. 제안한 표적 추출 방법의 성능을 평가하기 위해 다양한 실제 전차의 FLIR 영상을 이용하여 기존의 분할 방법과 비교한다. 실험을 통해 제안한 알고리즘이 우수한 분할 성능을 보임을 증명한다.