• Title/Summary/Keyword: 표면 광전압

Search Result 21, Processing Time 0.029 seconds

A study on characteristics of ZnSe epilayer by using surface photovoltage (표면 광전압을 이용한 ZnSe 에피층의 특성 연구)

  • 최상수;정명랑;김주현;배인호;박성배
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.350-355
    • /
    • 2001
  • We have investigated characteristics of ZnSe epilayer grown by molecular beam epitaxy(MBE) on semi-insulating(SI) GaAs by using surface photovoltage(SPV). The measurements of SPV were performed with illumination intensity and modulation frequency. The bandgap energy of ZnSe epilayer was determined from derivative surface photovoltage (DSPV). The five states were observed at room temperature(RT), and those states relate to the impurity and defect formed hetero-interface of ZnSe and GaAs during the sample growth. The observed states represented as a tendency of typical extrinsic transition on the increasing illumination intensity. The 1s and 2s signals related to the excitonic absorption were not observed at RT, but those were presented with the splitted of two peaks in the SPV at 80 K. From the modulation frequency dependence, we obtained the junction conductance and capacitance of the sample.

  • PDF

A study on surface photovoltage of $Al_{0.24}Ga_{0.76}As/GaAs$ epilayer ($Al_{0.24}Ga_{0.76}As/GaAs$ 에피층에서의 표면 광전압에 관한 연구)

  • 유재인;김도균;김근형;배인호;김인수;한병국
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.116-121
    • /
    • 2000
  • We measured surface photovoltage (SPV) of $Al_{0.24}Ga_{0.76}As/GaAs$ epilayer grown by molecular beam epitixy (MBE). The band gap energies of $Al_{0.24}Ga_{0.76}As/GaAs$ epilayer, GaAs substrate and buffer layer obtained from SPV signals are 1.70, 1.40 and 1.42 eV, respectively. There results are in good agreements with photoreflectance (PR) measurement. The measured SPV intensity of GaAs substrate is three times larger than $Al_{0.24}Ga_{0.76}$Asepilayer by carrier mobility difference. The parameters of Varshni equation were determined from the SPV spectra as a function of temperature.

  • PDF

Surface Photovoltage of $Al_{0.3}$$Ga_{0.7}$As/GaAs Multi-Quantum Well Structures ($Al_{0.3}$$Ga_{0.7}$As/GaAs 다중 양자 우물 구조의 표면 광전압에 관한 연구)

  • 이정열;김기홍;손정식;배인호;김인수;박성배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.1
    • /
    • pp.21-27
    • /
    • 2000
  • We used the surface photovoltage spectroscopy(SPVS) for characterization of GaAs/Al\ulcornerGa\ulcornerAs multi-quantum well(MQW) structures grown by molecular beam epitaxy(MBE) method. Energy gap related transitions in GaAs and AlGaAs were observed. The Al composition(x=0.3) was determined by Sek's composition formula. Transition energies in MQW were determined using the differential surface photo-volatage spectroscopy)DSPVS) of the measured resonanced. In order to indentify the transitions, the experimentally observed energies were compared with results of the envelope function approximation for a rectangular quantum well. We have observed and interesting behavior of the temperature dependence(80K~300K) of the 11Hand 11L transition for sample.

  • PDF

A study on surface photovoltage characteristics of $IN_{0.03}Ga_{0.97}AS/GaAs$ epilayer ($IN_{0.03}Ga_{0.97}AS/GaAs$에피층의 표면 광전압 특성에 관한 연구)

  • 최상수;김기홍;배인호
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.81-86
    • /
    • 2001
  • We have investigated surface photovoltage characteristics of InGaAs grown by metalorganic chemical vapor deposition (MOCVD) method on semi-insulating GaAs. The splitted SPV signals from the substrate and epilayer were observed. The band gap energy of InGaAs was about 1.376 eV, The In composition(x) was determined by Pan's composition formula. The photovoltage gradually decreases with increasing frequency. This is because the transfer of charge from the surface states reduces. From the temperature dependent SPV measurement, we obtained Varshni and temperature coefficients. In spectrum of etched sample at 300 K, the 'A' peak below $E_o(GaAs)$ is related with residual impurity during sample growth.

  • PDF

Surface Photovoltage Characterization of In0.49Ga0.51P/GaAs Heterostructures (In0.49Ga0.51P/GaAs 이종접합 구조의 표면 광전압 특성)

  • Kim, Jeong-Hwa;Kim, In-Soo;Bae, In-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.353-359
    • /
    • 2010
  • We report the surface photovoltage (SPV) properties of $In_{0.49}Ga_{0.51}P$/GaAs heterostructure grown by metal-organic chemical vapour deposition (MOCVD). The SPV measurements were studied as a function of modulation beam intensity, modulation frequency and temperature. From a line shape analysis of room temperature derivative surface photovoltage (DSPV) spectrum, the band gap energies for GaAs and $In_{0.49}Ga_{0.51}P$ transitions were 1.400 and 1.893 eV respectively. The surface photovoltage (SPV) increases with increasing the light intensity and temperature, whereas the SPV decreases with increasing the modulation frequency. From the temperature variation of the energy gaps, we have analysis by both Varshni and Bose-Einstein type expressions.

Surface Photovoltage Characteristics of ${In_{0.5}}({Ga_{1-x}}{Al_x})_{0.5}P$/GaAs Double Heterostructures (${In_{0.5}}({Ga_{1-x}}{Al_x})_{0.5}P$/GaAs 이중 이종접합 구조에 대한 표면 광전압 특성)

  • Kim, Ki-Hong;Choi, Sang-Soo;Bae, In-Ho;Kim, I n-Soo;Park, Sung-Bae
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.655-660
    • /
    • 2001
  • Surface photovoltage spectroscopy was used to study $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P/GaAs$ grown by metalorganic chemical vapor deposition(MOCVD). Energy gap related transition in GaAs and $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P$ were observed. By measuring the frequency dependence of $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P/GaAs$, we observed that SPV line shape does not chance, whereas the amplitude change. This results is due to the difference in the lifetimes of the photocarriers in GaAs and in $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P$. We also have evaluated the parameters that describe the temperature dependences of the band gap.

  • PDF

Characteristics of Optical Absorption in ${Al_{0.24}}{Ga_{0.76}}As/GaAs$ Multi-Quantum Wells by a Surface Photovoltage Method (표면 광전압 방법에 의한 ${Al_{0.24}}{Ga_{0.76}}As/GaAs$ 다중 양자우물 구조의 광 흡수 특성)

  • Kim, Gi-Hong;Choe, Sang-Su;Son, Yeong-Ho;Bae, In-Ho;Hwang, Do-Won;Sin, Yeong-Nam
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.698-702
    • /
    • 2000
  • The characteristics of optical absorption in $Al_{0.24}Ga_{0.76}As/GaAs$ multi-quantum wells(MQWs) structure were investigated by using the surface photovoltage(SPV). The Spy features near 1.42 eV showed two overlapping signals. By chemical etching, we found associated with the GaAs substrate and the GaAs cap layer. The Al composition(x=24 %) was determined by Kuech's composition formula. In order to identify the transition energies. the experimentally observed energies were compared with results of the envelope function approximation for a rectangular quantum wells An amplitude variation of the relative Spy intensity from the GaAs substrate, llH, and llL was observed at different light intensities. A variation in the SPY line shape of the transition energies were observed with decreasing tempera­t ture.

  • PDF

A Consideration on Characterization Methods for Solar Cells (태양전지의 특성분석에 관한 고찰)

  • Park, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.05a
    • /
    • pp.33-34
    • /
    • 1988
  • Recent developments in characterization techniques for solar cells are reviewed. First, general rules of material selection for solar cells such as $CuInSe_2$ and amorphous silicon of photovoltaic application are studied. Secondly, a method to obtain correct cell efficiency measurements under AM1 condition is introduced. Thirdly, various characterization techniques for solar cells are discussed. A special emphasis is given to up-scaling and computer control of the characterizations in the following systems; cell I-V characteristics for cell efficiency and other cell parameters, spectral response for quantum efficiency, surface photovoltage for diffusion length of minority carriers, and photothermal deflection for density of states in energy gaps.

  • PDF

The Characteristics of Surface Flashover on the Semiconductor in High Electric-Field (고전계 하에서 반도체 연면방전 특성)

  • 이세훈;이충식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2002
  • In the last decade, considerable efforts have been made to make a new class of solid state high power, high speed electronic device, namely, the Photo-Conductive Power Switch(PCPS), and to characterize the high-field performance of PCPS under high power, high voltage conditions. But the problem of surface flashover phenomena persist, preventing the realization of reliable and efficient high-speed, high voltage switching devices. It is essential to have a clear understanding on the physical processes behind the surface flashover problem to develop new technologies and device architectures so as to fabricate PCPS that are capable of high-field high-voltage. Also, it is imperative to identify new materials that could satisfy the requirements for high-field, high-power devices. Since surface flashover, surface breakdown phenomena is observed for all the devices that foiled at the applied field much lower than semiconductor bulk breakdown field, surface passivation is considered one of the important practical methods to improve the high field performance of the devices. Therefore, this paper was studied the main properties and mechanism of the semiconductor surface flashover before and after passivation under high electric-field.

Analyses of the Output Characteristics and the Internal Impedance of Dye-sensitized Solar Cell according to the Fabrication of the Blocking layer (Blocking layer 제작에 따른 염료감응형 태양전지 출력특성 및 내부 임피던스 분석)

  • Kim, Jin-Kyoung;Son, Min-Kyu;Choi, Jin-Ho;Kim, Soo-Kyoung;Hong, Na-Yeong;Kim, Hee-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1471-1472
    • /
    • 2011
  • 최근 경재적인 한계를 드러내고 있는 실리콘 태양전지의 대안으로 주목받고 있는 염료감응형 태양전지는 식물의 광합성 원리에 기초하여 빛이 입사하면 염료 분자가 포톤을 흡수해 여기하면서 전자를 방출함으로써 기전력을 발생시키는 원리로 동작한다. 염료에서 발생된 전자는 $TiO_2$의 conduction band로 주입되어 확산을 통해 TCO 기판으로 이동한다. 이때 다공성 나노구조의 $TiO_2$ 표면과 전해질의 접촉이 발생하게 되고 이로 인해 $TiO_2$ conduction band의 전자와 전해질의 $I_3{^-}$ 간의 재결합이 발생하게 되는데 이것은 DSC의 기능을 저하시키는 요인 중의 하나이다. 이러한 문제점은 $Al_2O_3$, ZnO, MgO, $BaTiO_2$ 등의 표면처리에 의한 core-shell 나노구조를 형성함으로써 해결할 수 있다. 본 연구에서는 aluminum isopropoxidee와 magnesium chloride 혼합 용액을 사용하여 core-shell 나노구조를 형성하여 셀을 제작하고, 완성된 셀의 출력특성과 내부 임피던스의 변화를 측정, 분석함으로써 단일 용액을 사용하였을 때에 비해 효과적인 재결합 감소와 광전압의 상승효과를 확인할 수 있었다.

  • PDF