• Title/Summary/Keyword: 표면압력

Search Result 1,278, Processing Time 0.033 seconds

Pullout Characteristics of Reinforcing Body Using Pressure Re-injection Grouting Method (압력재주입 그라우팅 방식을 이용한 보강재의 인발특성)

  • Lee, Bongjik;Kim, Sangsu;Youn, Junsik;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.10
    • /
    • pp.25-31
    • /
    • 2010
  • Anchor, soil nail, micropile have been widely used for slope reinforcement and foundation. These all methods need grouting work after placing reinforcing member. In domestic case, gravity fill techniques and pressure grouting techniques are mainly used. In contrast the pressure re-injection grouting method is not commonly used because grouting equipment and lack of practical application example is short and the verification of reinforcing effect is difficult. Pressure re-injection grouting is a kind of post grouting which technique increases the radial stresses acting on the grout body and causes irregular surface to be developed around bond length that tends to interlock the grout and the ground. In this study, the field test was performed to evaluate the reinforcing effect with the variation of grouting methods and pullout characteristics of reinforcing member placed by pressure re-injection grouting method. The test results showed that the post-grouting methods were useful to increase the pullout capacity.

A NUMERICAL STUDY ON THE EFFECT OF VEHICLE-TO-VEHICLE DISTANCE ON THE AERODYNAMIC CHARACTERISTICS OF A MOVING VEHICLE (차간 거리가 주행차량의 공력특성에 미치는 영향에 관한 수치해석 연구)

  • Kim, D.G.;Kim, C.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.66-71
    • /
    • 2014
  • Aerodynamic design of a vehicle has very important meaning on the fuel economy, dynamic stability and the noise & vibration of a moving vehicle. In this study, the correlation of aerodynamic effect between two model vehicles moving inline on a road was studied with the basic SAE model vehicle. Drag and lift are two main physical forces acting on the vehicle and both of them directly effect on the fuel economy and driving stability of the vehicle. For the research, the distance between two vehicles is varied from 5m to 30m at the fixed vehicle speed, 100km/h and the side-wind was assumed to be zero. The main issue for this numerical research is on the understanding of the interaction forces; lift and drag between two vehicles formed inline. From the study, it was found that as the distance between two vehicles is closer, the drag force acting on both the front and rear vehicle decreases and the lift force has same trend for both vehicle. As the distance(D) is 5m, the drag of the front vehicle reduced 7.4% but 28.5% for the rear-side vehicle. As the distance is 30m, the drag of the rear vehicle is still reduced to 22% compared to the single driving.

A NUMERICAL STUDY ON THE EFFECT OF DOWN-WASH OF A WING-BODY ON ITS AERODYNAMIC CHARACTERISTICS (익형 동체의 하강기류(Down-wash)가 공기역학적 특성에 미치는 영향에 관한 수치해석연구)

  • Yoon, K.H.;Kim, C.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.8-13
    • /
    • 2013
  • Drag reduction of a running vehicle is very important issue for the energy savings and emission reduction of its power train. Especially for a solar powered electric vehicle, the drag reduction and weight lightening are two serious problems to be solved to extend its driving distance under the given energy condition. In this study, the ground effect of an airfoil shaped road vehicle was studied for an optimum body design of an ultra-light solar powered electric vehicle. Clark-Y airfoil type was adopted to the body shape of the model vehicle to reduce aerodynamic drag. From the study, it was found that the drag of the model vehicle was reduced as the height(h) between ground and the lower surface of the model vehicle was decreased. It is due to the reduction of the down-wash decreasing the induced drag of the vehicle. The lift was also decreased as the height decreased. It is due to the turbulent boundary layer developed beneath the vehicle body. The drag is classified into two types; the form and friction drag. The fraction of form drag to friction one is 76 to 24 on the model vehicle. As the height(h) of the model vehicle from the ground surface increases the form drag also increases but the friction drag is in reverse.

A Study on the Integrity Evaluation Method of Subclad Crack Under Pressurized Thermal Shock (가압열충격 사고시 클래드 하부균열 안전성 평가 방법에 관한 연구)

  • Kim, Yeong-Jin;Kim, Jin-Su;Gu, Bon-Geol;Choe, Jae-Bung;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1139-1146
    • /
    • 2001
  • The reactor pressure vessel(RPV) is usually cladded with stainless steel to prevent corrosion and radiation embrittlement, and a number of subclad cracks have been found during an in-service-inspection. These subclad cracks should be assured for a safe operation under normal conditions and faulted conditions such as pressurized thermal shock(PTS). Currently available integrity assessment procedure for an RPV, ASME Code Sec. XI, are built on the basis of linear fracture mechanics (LEFM). In PTS condition, however, thermal stress and mechanical stress give rise to high tensile stress at the cladding and elastic-plastic behavior is expected in this area. Therfore, ASME Code Sec. XI is overly conservative in assessing the structural integrity under PTS condition. In this paper, the fracture parameter (stress intensity factor, K, and RT(sub)NDT) from elastic analysis using ASME Sec. XI and finite element method were validated against 3-D elastic-plastic finite element analyses. The difference between elastic and elastic-plastic analysis became significant with increasing crack depth. Therfore, it is recommended to perform elastic-plastic analysis for the accurate assessment of subclad cracks under TPS which causes plastic deformation at the cladding.

Analysis of Filling and Stresses in the Hot Forging Process Depending on Flange Die Shapes (열간단조 플랜지 금형의 형상에 따른 충전 및 응력해석)

  • Kim, Jun-Hyoung;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.423-430
    • /
    • 2010
  • Hot closed-forging process and the die used for forming an automotive flange were analyzed from the viewpoints of heat transfer, grain-flow lines, and stresses to obtain a forged product without defects such as surface cracks, laps, cold shots, and partial filling. The forging process including up-set, pre-forging, final forging and pressing forces was investigated using finite element analysis. The influence of the preform die and the ratio of the heights of the upper die to lower die on the forging process and die were investigated and a die shape ($10^{\circ}$ for the preform die, and 1.5:1 ratio for the final die) suitable to achieve successful forging was determined on the basis of a parametric study. All parametric design requirements such as strength, full filling, and a load limit of 13,000 KN were satisfied for this newly developed flange die. New dies and flanges were fabricated and investigated. Defects such as partial filling and surface cracks were not observed.

Analysis of Hot Judder of Disc Brakes for Automotives by Using Finite Element Method (유한 요소법을 이용한 자동차용 디스크 브레이크의 열간 저더 해석)

  • Jung, Sung-Pil;Park, Tae-Won;Chung, Won-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.425-431
    • /
    • 2011
  • Thermal energy generated because of the friction between the disc and pad is transferred to both sides and causes thermal expansion of the material, which affects the contact pressure distribution. This phenomenon, which is called thermoelastic instability (TEI), is affected by the natural mode of a disc. TEI results in the formation of a hot spot and causes hot judder vibrations. In this study, three-dimensional analysis of the hot judder of a ventilated disc for automotives was performed by using the commercial finite element analysis program, SAMCEF. The intermediate processor based on a staggered approach was used to exchange the result data of the mechanical and thermal model. The hot spot was formed on the surface of the disc, and the number of hot spots was compared with the natural mode of the disc.

Performance of Airlift Pumps for Water Circulation and Aeration (물 순환 및 에어레이션용 에어리프트 펌프의 성능)

  • OH Se-Kyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.6
    • /
    • pp.529-537
    • /
    • 1992
  • Airlift pumps were tested to evaluate their pumping and aeration capacities. The pumps were 34.5 inch long made of 2, 3, 4 and 6 inch nominal diameter PVC pipes. An one hp air blower was used to supply the air. The air-flow rate was measured by an anemometer type air-flow meter and air pressure was level changes in a water tank from which water was pumped. Aeration by the pumps was tested by the standard aeration test method with the center of pump outlet positioned 3 inches above water surface. Oxygen concentrations in water were measured to determine aeration rate. As pumping head increased by water level draw-down in the tank water flow decreased while air flow increased. The reduction rate of water flow was higher with 4 and 6-inch pumps. Small pumps showed very minor changes in the reduction. Aeration rates were similar among 3, 4, and 6 inch pumps. With one hp air blower 6-inch pump at the minimum pumping head achieved the best performance in terms of water circulation.

  • PDF

Fouling Behavior of Bentonite Colloidal Suspensions in Microfiltration (벤토나이트 현탁액에 의한 정밀여과 막의 오염특성)

  • Nam, Suk-Tae;Han, Myeong-Jin
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.53-64
    • /
    • 2008
  • Fouling behavior of polyethylene capillary membranes was examined by measuring the flux of bentonite colloidal suspensions through the cross flow micro filtration. The membrane fouling was due to the three mechanisms: the cake formation on the membrane surface, the standard pore blocking and the complete pore blocking by particles. These mechanisms were simultaneously responsible for the membrane fouling, being significantly governed by the cake filtration. In the total fouling at $1.0kg/cm^2$ TMP condition, the complete blocking was 3.36%, the standard blocking 3.18% and the cake filtration 96.05%. For 1000 ppm feed solution, the complete blocking was 1.71% compared with the standard blocking of 1.90% and the cake filtration of 96.39%. And 96.14% of the total fouling was generated at the initial period of filtration. The cake filtration effect was larger on $0.34{\mu}m$ pore membrane than on $0.24{\mu}m$ pore membrane. With the increase in cross flow velocity, the component fouling decreased by 10.20%, and the ratio of pore blocking to total fouling increased.

$CH_4$$N_2$ 가스 혼합비에 따른 a-C:H:N 박막의 물성 연구

  • 유영조;김효근;오재석
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.94-94
    • /
    • 1998
  • 최근 a-CH:N (hydrogenated amorphous carbon nitride)가 a-CH 보다 팡학적, 기계객성 질이 우수하므로 이에 대한 연구가 활발하게 진행되고 있다. 본 실험에선 원료 가스의 유량 은 5 sccm으로 고정시킨 채 원료가스내의 질소 대 메탄 혼합비 (N2ICHa)훌 O 에서 4 까지 변 화시 키 띤서 DC saddle-field PECVD (plasma enhanced chemical vapour d야Xlsition)훌 이 용하여 a-CH:N 박막융 제작하여, 가스 혼합비가 박막의 미세구조와 광학척 성질에 미치는 영향올 연구하였다. 박막 성장시 진공조 내의 압력온 throttle valve롤 사용하여 90 mTorr로 일정하게 유지하였으며 양극 전압과 기판전업은 각각 500 V, 200 V로 고청하고 상온에서 중 착하였다. a a -step으로 측정 한 a-C:H:N 박막의 두께는 혼합가스내의 질소의 양이 증가할수륙 4800 A에서 2000 A로 두께가 감소하였지만 표면 rot핑비less는 혼합가스내의 질소의 양이 중가할 수록 중가함을 AFM (atomic force mi$\alpha$'0 scopy) 으로 관찰하였다. 박막내의 C와 N의 정량 분석은 RES (Rutherford back scattering s야ctroscopy) 핵공명법을 이용하여 분석하였다. X XPS (X -ray photoelectron spec$\sigma$oscopy) 와 FT-IR (Fo삐er transform-infrared s spectrometry)로 미세구조률 측정한 결과 혼합가스내의 질소의 양이 충가할수록 C-H기는 감 소하였지 만 C르N, N-H기 는 늘어 났다. 또한 PL (photoluminescence) 측정 결과 웬료가스 내 메탄과 질소의 비율이 1:1일 때 최대의 발광올 보였고 UVS (비없 vi이et spec$\sigma$orne$\sigma$y)으 로 측정한 광학쩍 에너지 캡은 혼합비내의 질소의 양이 증가할수록 2.53 eV에서 2.3 eV로 감 소하였다. 이를 결과로부터 원료가스내의 N2ICHa의 중가에 따른 박막의 미세구조 변화와 광학척 생 질의 상관 관계가 고찰될 것이다.

  • PDF

Reliability assessment of RPCB and FPCB Joints bonded using Thermo-compression (열 압착으로 접합된 RPCB와 FPCB 접합부의 신뢰성 평가)

  • Jang, Jin-Kyu;Lee, Jong-Gun;Lee, Jong-Bum;Ha, Sang-Su;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.81-81
    • /
    • 2009
  • 최근 휴대폰, 노트북 등과 같은 소형 멀티미디어 기기의 사용이 증가함에 따라 전자 패키징 산업은 경박단소화를 요구하고 있습니다. 더불어 전기적 신호의 손실을 줄이기 위해 전기, 전자산업체에서는 가볍고 굴곡성이 우수한 연성인쇄회로기판(Flexible Printed Circuit Board, FPCB)과 가격이 싸고 신뢰성이 입증된 경성인쇄회로기판(Rigid Printed Circuit Board, RPCB)의 전극간 접합에 많은 관심을 보이고 있습니다. 기존에 연성인쇄회로기판과 경성인쇄회로기판을 접합하는 방식으로는 connector를 이용한 체결법이 사용되고 있지만 완성품의 부피가 커지고 자동화 공정이 힘들며 I/O 개수가 제한적이어서 신호전달에 취약한 단점이 있습니다. 또한, 최근 FPCB를 RPCB에 접합하는데 interconnection으로 이방성 도전 필름(Anisotropic conductive film, ACF) 또는 비전도성 필름(Non-conductive film)이 널리 사용되고 있습니다. 하지만 필름의 가격이 비싸고, 낮은 전기 전도도를 보이며, 신뢰성 특성이 낮다는 단점을 가지고 있습니다. 본 실험에서는 기존의 connector 방식과 접착 필름을 이용한 방식을 대체하기 위하여 솔더를 interlayer로 이용하여 열과 압력으로 접합하는 방법에 대하여 연구하였습니다. 실험에 사용된 솔더의 조성은 Sn-3.0Ag-0.5Cu (in wt%)이고, RPCB와 FPCB의 표면처리는 ENIG로 하였습니다. 접합 온도와 접합 시간에 따라 최적의 접합 조건을 도출하고자 하였고, 접합된 시편을 가지고 신뢰성 테스트를 진행하였습니다. $85^{\circ}C$/85% 고온고습 시험과 고온 방치 시험을 통하여 접합부의 신뢰성을 테스트 하였고, 90도 Peel test로 기계적 접합 강도를 측정하였고, 파괴 단면을 Scanning Electron Microscopy (SEM), Energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS)로 분석하였습니다.

  • PDF