• Title/Summary/Keyword: 표면다짐

Search Result 44, Processing Time 0.025 seconds

Effects of Surface Compaction Treatment on Soil Loss from Disturbed Bare Slopes under Simulated Rainfalls (인공강우 시 나지교란사면 토사유출에 미치는 다짐처리의 영향)

  • Park, Sang Deog;Shin, Seung Sook;Kim, Seon Jeong;Choi, Byoungkoo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.559-568
    • /
    • 2013
  • Surface compaction significantly impacts runoff and soil erosion under rainfall since it leads to changes of soil physical characteristics such as increase of bulk density and shear stress, change of microporosity, and decrease of hydraulic conductivity. This study addressed surface compaction effects on runoff and soil loss from bare and disturbed soils that are commonly distributed on construction sites. Thirty-six rainfall simulations from three replicates of each involving rainfall intensities (68.5 mm/hr, 95.6 mm/hr) and plot gradients ($5^{\circ}$, $12.5^{\circ}$, $20^{\circ}$) were conducted to measure runoff and soil loss for two different soil surface treatments (compacted surface, non-compacted surface). Compacted surface increased significantly soil bulk density and soil strength. However, the effect of surface treatments on runoff changed with rainfall intensity and plot gradient. Rainfall intensity and plot gradient had a positive effect on mean soil loss. In addition, the effect of surface treatments on soil loss responded differently with rainfall intensity and plot gradient. Compacted surfaces increased soil loss at gentle slope ($5^{\circ}$) while they decreased soil loss at steep slope ($20^{\circ}$). These results indicate that there exists transitional slope range ($10{\sim}15^{\circ}$) between gentle and steep slope by surface compaction effects on soil loss under disturbed bare soils and simulated rainfalls.

Evaluation of Ground Compaction Using SASW Testing (SASW 시험을 활용한 지반 현장 다짐도 평가)

  • Gunwoong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.9-15
    • /
    • 2023
  • Compaction is performed in civil engineering sites to secure the stability of the ground and prevent settlement. While the process of compaction is crucial, it is also essential to evaluate the degree of compaction after the completion of the process. In domestic sites, the evaluation of compaction is mainly conducted on a small number of spot using point-based tests such as plate load tests and sand cone tests. The methods presented so far allow assessment of surface compaction, but evaluating compaction in deeper layers poses challenges. Moreover, due to the limited coverage of point-based testing, it is difficult to achieve an overall assessment of compaction. As a solution to these issues, the Spectral-Analysis-of-Surface-Waves (SASW) tests were utilized to evaluate compaction. SASW tests offer a broader measurement range compared to point-based tests, and depending on the test setup, this method can provide the stiffness of the ground at greater depths. In this study, SASW tests were conducted in a compacted soil site under different conditions to assess compaction. Additionally, Nuclear Density Gauge tests were conducted concurrently to compare and verify the results of SASW. The research results confirmed the feasibility of evaluating compaction using SASW at the geotechnical site.

Evaluation of the Compaction Characteristics of CFRD Construction Materials (CFRD 시공시 축조재료의 다짐특성 평가)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Park, Jong-Hwa
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.415-424
    • /
    • 2010
  • A prototype of a Concrete-Faced Rock-fill Dam (CFRD) was constructed to evaluate the behavior of the materials in each zone within the dam. The tested materials, selected based on their grain size distribution, were used in constructing the prototype dam with layers of variable thickness, settlement ratio, and water content. We investigated the suitability of various values of hydraulic conductivity, water content, dry unit weight, and settlement ratio for zones within the dam. The test results revealed the relationships between the number of passes and the dry unit weight, between the dry unit weight and the settlement ratio, and between the settlement ratio and the number of passes. This paper focuses on the relationship between hydraulic conductivity and the number of passes. The results of the present analysis could be used to establish reasonable compaction standards for materials used in dam construction.

Compaction Characteristics of Zone-1 Material in Concrete Faced Rockfill Dam (콘크리트 표면 차수벽형 석괴댐의 Zone-1재료에 대한 다짐특성)

  • Yea, Geu-Guwen;Han, Sang-Hyun;Lee, Jae-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.2
    • /
    • pp.9-15
    • /
    • 2007
  • Bedding zone in CRFD (Concrete Faced Rockfill Dam) requires bearing capacity to support the concrete face slab uniformly. Also, shear strength which is a key factor in slope stability and impermeability which is to prevent a loss of soils in case of leakage of concrete slab face are needed. In this study, trial prototype construction for bedding zone in CRFD was performed to investigate the compaction characteristics of bedding zone according to the frequency of compaction, water contents and so on. As a results of series of field test, the compaction characteristics of bedding zone in CRFD was affected considerably by the depth of compaction layer and frequency of compaction.

  • PDF

Experimental Study on the Engineering Characteristics of Weathering Mudstone -In Pohang area- (이암 황화토의 공학적 특성에 관한 실험적 연구 -포항지역의 이암봉화토를 중심으로-)

  • 김영수;박강우
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.5-16
    • /
    • 1994
  • This paper is concerned with the engineering characteristics weathered mudstone soil in Pohang area. The crushability of weathered Boil can be described in terms of the ratio of surface area(Sw'/Sw). In this study, the characteristics of weathered mudstone soil was investigated by performing teat such as compaction. CBR, permeability, and grain size according to compaction energy. The results are found as follows : (1) In generally, the specific gravity of weathered mudstone soil is very small and optimum moisture content (OMC) is large and maximum dry density is small (2) The CBR value increases as the compaction energy increases, but this value decreses from D -2 compaction(26kg.cm/cm3). the swelling ratio increases the npaction energy to 20.6kg.cm/cm" and decreases in all compaction energy from 20.6kg.cm/cm3 (3) As the compaction energy is small, the change of permeability due to water content is large and the difference between minimum coefficient of permeability and coefficient of permeability at OMC is large, but the difference is small as the compaction energy increases (4) The decrease of permeability due to the decrease of void ratio and the increase of ratio of surface area is caused by the crush of particle due to the increase in compaction energy. Especially, the compaction energy is smaller, the change of the ratio of surface area to the coefficient of permeability is larger.rger.

  • PDF

Evaluation Technique of Ground Densification on Sand Deposit using SASW and Resonant Column Tests (표면파시험과 공진주시험을 이용한 사질토지반 개량평가 시스템의 개발)

  • 김동수;박형춘;김성인
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.41-52
    • /
    • 1999
  • In order to assess the quality and depth of ground densification by compaction, SPT and/or CPT are performed before and after compaction. Both methods are intrusive and one point tests, require a substantial time to evaluate a large area, and their results are quite dependent on the operation technique and soil type. In this paper, the quality and extent of ground densification by compaction was evaluated by using in situ SASW test and laboratory resonant column (RC) test results. SASW test was used to determine the shear wave velocity profiles before and after compaction, and RC test was adopted to determine the correlation between the normalized shear wave velocity and the density of the site, which is almost uniquely independent of confinement. Testing and data reduction procedures of both tests were discussed, and a simplified evaluation procedure of ground densification was proposed. Finally, the feasibility of the proposed method was verified by performing field study at Inchon International Airport Project. Field densities determined by the proposed method matched well with those determined by sand cone tests.

  • PDF

Permeability Effect of Decomposed Granite Soil under the Influence of Crushability and Compaction Energy (화강풍화토(花崗風化土)의 파쇄(破碎) 및 다짐에너지가 투수성(透水性)에 미치는 영향(影響))

  • Lee, Hyoung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.107-116
    • /
    • 1983
  • This paper is concerned with the permeability through a decomposed granite soil layer which is influnced by change of grain sizes and crushed soils made by varied compaction energy. The change in the content of crushed soils can be described in terms of the ratio of surface area ($S_w{^{\prime}}/S_w $). The experiments were carried out to obtain the relationships of the coefficient of permeability(K) versus the optimum moisture content($w_{opt}$) by the variable head permeability test with the samples that were preapared by compaction test. The results are found as follows; (1) By the change in compaction energy, the crush ratio increased whereas the void ratio decreased with a larger maximum dry density running in parallel with the zero air void curve. (2) The ratio of surface area was $0.33(P)^{0.96}$ in $S_w{^{\prime}}/S_w $ with no relation to the compaction energy. (3) The grain size which produced the largest crush of soil particles ranged from 0.5 to 1 millimetre (4) The relationship of K versus $e^3$/1+e appeared as a straight line on the full-log-scale paper under the optimum moisture state. (5) As the compaction energy was larger, the passing percentage of #200-sieve grains increased linearly. The increment in the surface area ratio was deemed to have been caused by the decreased in the permeability.

  • PDF

Effective Compaction Method of Hot Mix Asphalt Using Infrared Camera (Infrared Camera를 활용한 가열 아스팔트 혼합물의 효율적인 다짐관리 방안)

  • Kim, Jun-Hyung;Lee, Suck-Hong;Kim, Wan-Sang
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.105-108
    • /
    • 2007
  • In resent years, temperature segregation has been identified as one of the most important concepts concerning segregation. An Infrared Camera is one of the tools that have been recognized to be effective in identifying temperature segregation. Several state of USA have recognized the problem and have enacted Specifications, and/or test procedures to eliminate temperature segregation. The major objective of this study is to investigate effective compaction method of hot mix asphalt during road construction using Infrared Camera.

  • PDF

Settlement Behavior of Foundation Rubble-mound by Vibro-Compaction (진동다짐에 의한 기초사석의 침하거동)

  • Yoo, Kun-Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.127-136
    • /
    • 2011
  • The settlement of a compaction plate resting on the surface of rubble-mound and subjected to a vibrating vertical load can be characterized by a transient amplitude and a plastic settlement. As long as the maximum imposed load does not exceed the bearing capacity of the rubble-mound, plastic settlement will approach an ultimate value and essentially steady-state vibration will ensue. For the settlement behavior by vibro-compaction, most laboratory experiments were conducted on laterally confined samples with loads over the full surface area or on samples placed on a vibrating table. In the field, the loads cover only a small fraction of the surface area. In this study, crushed stones are loaded with the same as field condition. According to the vibro-compaction experiments on crushed stone, it was found that approximately 90% of total settlement occur within 2 minutes and plastic settlement increases with increasing cyclic stress levels including static and dynamic stress. A compaction equation on which the number of load cycles, amplitude of plate, settlement, width of plate, and cyclic stress are related each other is proposed.