DOI QR코드

DOI QR Code

Settlement Behavior of Foundation Rubble-mound by Vibro-Compaction

진동다짐에 의한 기초사석의 침하거동

  • 유건선 (한라대학교 공과대학 토목공학과)
  • Received : 2011.03.07
  • Accepted : 2011.06.25
  • Published : 2011.08.31

Abstract

The settlement of a compaction plate resting on the surface of rubble-mound and subjected to a vibrating vertical load can be characterized by a transient amplitude and a plastic settlement. As long as the maximum imposed load does not exceed the bearing capacity of the rubble-mound, plastic settlement will approach an ultimate value and essentially steady-state vibration will ensue. For the settlement behavior by vibro-compaction, most laboratory experiments were conducted on laterally confined samples with loads over the full surface area or on samples placed on a vibrating table. In the field, the loads cover only a small fraction of the surface area. In this study, crushed stones are loaded with the same as field condition. According to the vibro-compaction experiments on crushed stone, it was found that approximately 90% of total settlement occur within 2 minutes and plastic settlement increases with increasing cyclic stress levels including static and dynamic stress. A compaction equation on which the number of load cycles, amplitude of plate, settlement, width of plate, and cyclic stress are related each other is proposed.

기초사석 위에서 진동하중을 받는 진동다짐판의 침하는 일시적인 진폭과 소성침하로 나타낼 수 있다. 최대 진동하중이 사석의 지지력을 초과하지 않는 한, 소성침하량은 극한값으로 수렴하며 궁극적으로 정상적인 진동을 한다. 이러한 진동다짐의 침하거동에 대한 실내실험은 수평방향이 구속된 시료에 대하여 진동하중이 전체면적에 작용하도록 수행되었거나 진동대에 시료를 놓고 실험을 수행한 것이 대부분이다. 그러나 실제 현장에서는 진동하중이 기초사석 표면적의 일부에만 적용되고 있다. 본 연구에서는 현장조건에 맞게 쇄석에 진동하중을 작용토록 하였다. 쇄석에 대한 진동다짐실험에 따르면 전체 침하량의 약 90%가 2분 이내에 발생하며, 정적 및 동적응력을 포함한 진동응력 수준이 증가할수록 침하는 증가하였다. 진동다짐시, 진동다짐수, 진폭, 침하량, 재하폭, 진동응력의 상관관계를 나타내는 식을 제안하였다.

Keywords

References

  1. American Society for Testing Materials (1977) Standard Test Method for Bearing Capacity of Soil for Static Load on Spread Footings, ASTM-D1194-(72) (reapproved 1977). ASTM, Philadelphia, PA.
  2. Barkan, D. D. (1962) Dynamics of Bases and Foundations, Mc-Graw-Hill, New York.
  3. Barksdale, R. D. (1972) Laboratory Evaluation of Rutting in Base Course Materials, Proc. 3rd Int. Conference on Structure Design of Asphalt pavement, London, U.K., pp. 161-174.
  4. Breitenbach, A.J., (March, 1993) $^{\circ}{\times}$Rockfill Placement and Compaction Guidelines$^{\circ}{\pm}$, Geotechnical Testing Journal, ASTM, Philadelphia, Pennsylvania, Vol. 16, No. 1, pp. 76 to 84. https://doi.org/10.1520/GTJ10270J
  5. Brumund, F. and Leonards, G. A. (1972) Subsidence of Sand Due to Surface Vibration, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM1, pp. 27-42.
  6. D'Appolonia, E. (1970) Dynamic Loadings, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 96, No. SM1, pp. 49-72.
  7. Das, Braja M.(1993) Principles of Soil Dynamics, PWS-KENT publishing co., pp. 380.
  8. Moore, P. I. and Lokuratna, R. P. (1987) Settlement of footings on sandy soil under vertical vibratory loadings, Proc. 9th Southeast Asian Geotech. Conf., Bangkok, Thailand, No. 7.1-7.12.
  9. Ortigosa, P., and Whitman, R. V. (1968) Densification of Sand by Vertical Vibrations with Almost Constant Stress, publication No. 206, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge.
  10. Raymond, G. P., and Komos, F. E. (1978) Repeated Load Testing of a Model Plane Strain Footing, Canadian Geotechnical Journal, Vol. 15, No. 2, pp. 190-201. https://doi.org/10.1139/t78-019
  11. Richart, F. E., Jr. (1962) Foundation Vibrations, Transactions, ASCE, Vol. 127, Part 1, pp. 863-898.
  12. Sawick, A., Swidzinski, W., and Zadroga, B. (1998) Settlement of Shallow Foundation due to Cyclic Vertical Force, SOILS AND FOUNDATION, Mar. 1988, Vol. 38, No. 1, pp. 35-43. https://doi.org/10.3208/sandf.38.35
  13. Seed, H. B., Wong, R. T., Idriss, I. M., and Tokimatsu, K. (1986) Moduli and Damping Factors for Dynamic Analyses of Cohesive Soils, Journal of Geotechnical Engineering, ASCE, Vol. 112, No. GT11, pp. 1016-1032. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1016)
  14. Sherif, M. A., Ishibashi, I., and Gaddah, A. H. (1977) Damping Ratio for Dry Sands, Journal of Geotechnical Engineering, ASCE, Vol. 103, No. GT7, pp. 743-756.
  15. Steensen-Bach, JO, (2004) Compaction control of the stone beds for the Middelgrunden windmills NGM 2004. Nordic Geotechnical Meeting, 14, Ystad, May, 2004. Proceedings, Vol. 1, pp. C89-C100.
  16. Van Impe, W. F. (1980) A test equipment for large scale vertical cyclic loading tests on saturated sand, Proc. Int. Symp. On Soils under Cyclic and Transient Loading, Swansea, Vol. 1, pp.97-101.