• Title/Summary/Keyword: 폴리에틸렌 시트

Search Result 12, Processing Time 0.024 seconds

Effect of Structure on the Sound Absorption and Sound Transmission Loss of Composite Sheet (복합시트의 구조가 흡·차음성에 미치는 영향)

  • Lee, Byung-Chan;Kim, Sung-Ryong
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.154-158
    • /
    • 2012
  • The effect of structure on the sound absorption and sound transmission loss of composite sheet was investigated. A sheet of polypropylene was bonded by hot press with nonwoven fabric sheets of polyethylene terephthalate on the top side and the back side. Absorption coefficient of composite sheet using nonwoven fabric with surface density of $0.64kg/m^2$ was 0.1-0.2. It is 100-400% improvement compare to that of polypropylene sheet. The transmission loss of composite sheet was increased with surface density of polypropylene board and introduction of hemisphere hole on the surface of sheet. Two types of composite sheet were made using flat sheet and sine wave shaped sheet and the effect of sheet structure on the transmission loss was investigated.

A Study of The Isolated water-proofing method using poly-ethylene sheet in the underground water tank (폴리에틸렌시트를 이용한 콘크리트 지하저수조 기계고정식 절연방수공법에 관한 연구)

  • Lee Jong-Jin;Oh Chang-Won;Yeo Sung-Yi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.43-50
    • /
    • 2005
  • This study is for the isolated water-Proofing method using Poly-ethylene sheet in the underground water tank which is not affected by construction environments such as wet, low temperature and surface condition. The special features of this water-proofing method are that the construction and management control are very easier and more effective than the existing construction method.

  • PDF

Development of High-strength Polyethylene Terephthalate (PET) Sheet Through Low Melting Point Binder Compounding and Compression Process (저 융점 바인더 복합화 및 압착공정을 통한 고강도 폴리에틸렌 테레프탈레이트(PET) 시트 개발)

  • Moon, Jai Joung;Park, Ok-Kyung;Kim, Nam Hoon
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.282-287
    • /
    • 2020
  • In the present study, a high-strength polyethylene terephthalate (PET) sheet was fabricated through a densification process of low melting PET fiber (LMF) combined PET sheet. During the thermal heat treatment process of the combined LMF, individual PET fiber was connected, which in turn leads to the improvement of the interfacial bonding force between the fibers. Also, the densification of the PET sheet leads to reduce macrospore density and in return could enhance the binding force between the overlapped PET networks. Consequently, the asprepared LMF-PET sheet showed about 410% improved tensile strength and the same elongation compared to before compression. Besides, the enhanced bonding force can prevent the shrinkage of the PET fiber network and exhibited excellent dimensional stability.

Physical Properties of Medical Radiation Shielding Sheet According to Shielding Materials Fusion and Resin Modifier Properties (차폐 재료의 융합과 개질제 특성에 따른 의료방사선 차폐 시트 물리적 특성 고찰)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.99-106
    • /
    • 2018
  • The modifier proposed in this research is for enhancing the affinity of the glass component with the high polymer resin and the molecular weight. The particle packing, tensile strength and shielding performance of the shielding sheet made of the tungsten oxide were evaluated. The best effect can be obtained when 20% of the modifier PMMA used to improve the shielding performance and maintain the affinity and strength with the sealant is mixed. The fusion of the materials presented in this study and the mass production of the shielding sheet through the modifier are possible and will contribute to the production of lightweight shielding sheets in the future.

A Preliminary Experiment Study for Development of Floater of Floating Breakwater (부소파제의 부체 개발을 위한 기초적 실험 연구)

  • Jung D.H.;Kim H.J.;Kim J.H.;Moon D.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.3
    • /
    • pp.141-147
    • /
    • 2006
  • A newly designed floating breakwater made of Polyethylene with considering the introduction of new material for being harmony with environment and stability of the floater is developed for a marine ranching. In this study, the new concept in which incident wave dissipates its energy due to the vortex shedding by passing through the pipes and sheets is selected for wave breaking mechanism. Model experiment in order to te st its capability is performed for the regular and irregular waves in ocean engineering basin. Good capability to break the incident wave within the 6 seconds of period and 1 m of height is shown. Breaking efficiency for long period wave is not so good in regular and irregular wave. The results of this study will contribute to the design and construction of the floating breakwater.

  • PDF

A Experimental Study on Characteristics of the Ignition by Cigarette Light (담뱃불 발화특성에 관한 실험적 연구)

  • Yun, lnsu;Kim, Byungseon;Cho, Won Cheol;Lee, Tae Shik
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.1
    • /
    • pp.81-87
    • /
    • 2008
  • The cigarette holds more than 10 percents of the entire fire accidents despite the number of smokers rapidly decreases every year. The purpose of this study is to examine the ignition characteristics of cigarette by experimentation. This study analyzed the cases of fires inferred that they were caused by cigarette in Incheon during 2006. As the representative ignition materials, corrugated board, gasoline, lacquer thinner, tarpaulin, flexible PVC sheet, and poly ethylene were tested. In this experimentation, the corrugated board was ignited by cigarette. However gasoline, lacquer thinner, tarpaulin, flexible PVC sheet, and poly ethylene were seldom ignited. Meanwhile most fire investigators have argued that oils and tents were ignited by cigarette, but this study experimentally proved that such an argument might be ungrounded.

  • PDF

Synthesis of Cobalt Hydroxide Nanosheets based on Sonication-induced Exfoliation for Depolymerization of Polyethylene Terephthalate (폴리에틸렌 테레프탈레이트의 해중합을 위한 초음파 박리법 기반의 코발트 수산화물 나노시트의 제조)

  • Jin, Se Bin;Son, Seon Gyu;Jeong, Jae-Min;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.668-673
    • /
    • 2020
  • In this work, ultrathin and two-dimensional (2D) cobalt hydroxide [Co(OH)2] nanosheets were synthesized by a sonication assisted liquid-phase exfoliation of bulk Co(OH)2. The resulting exfoliated Co(OH)2 is a hexagonal mono-layered nanosheet with a high specific surface area of 27.5 ㎡ g-1. The depolymerization of polyethylene terephthalate (PET) based on glycolysis reaction was also performed using an exfoliated Co(OH)2 catalyst. Excellent catalytic reaction performances were demonstrated; a high PET conversion and bis(2-hydroxyethyl) terephthalate (BHET) yield of both 100% using the nanosheet catalyst were achieved within a reaction time and temperature of 30 min and 200 ℃, respectively. The long-term stability of exfoliated Co(OH)2 catalysts was also demonstrated by recyclability tests of the catalyzed glycolysis reaction of PET over four cycles, showing both 100% of high PET conversion and BHET yield.

Mechanical Properties of Polyethylene/Polypropylene/Waste Tire Rubber Powder Composites (폴리에틸렌/폴리프로필렌/폐타이어고무분말 복합체의 기계적 특성)

  • Choi, Jeong-Su;Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.318-323
    • /
    • 2011
  • To recycle the waste tire rubber powder, rubber powder composite for waterproof sheet was prepared, and analyzed the effect of the kind of resin and the amount of crosslinking agent on the mechanical property of the composites. The elongation-at-break of the PE composite increased more than 3 times as EPDM was added into rubber composites. As the content of the crosslinking agent increased, the tensile strength of composite increased as well. When recycled polypropylene was used, the increase in composite's tensile strength was more than 3 times. Therefore to use the recycled PP in composite is more effective rather than PP in term mechanical properties.

The Effects of Hardness and Thickness of Midsole on the Bending Properties of Footwear (미드솔의 경도 및 두께가 스포츠화의 굽힘 특선에 미치는 영향)

  • Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.41 no.2
    • /
    • pp.125-130
    • /
    • 2006
  • To understand the effect of midsole on the bending stiffness of footwear, bending moment is studied with various hardness and thickness of polyurethane(PU) and poly(ethyl one-co-vinylacetate)(EVA) foams which composed in footwear midsole. The initial bending moment of footwear was appeared at $19^{\circ}$ on bending angle of footwear, and this bending angle was not depend on thickness and hardness of midsole. The bending moments of footwear were also increased with increase of the hardness and thickness of misole which were composed in footwear. Increased hardness and increased thickness of foam and midsole also cause a greater bending moment of the sports shoe, respectively.

Electrical Conductivity, Optical Transmittance, and Oxidation Stability of Transparent Conductive Polymer Film Coated With Layered Pristine Single-walled Carbon Nanotube and Silver Nanowire (무정제 단일벽 탄소나노튜브와 은나노와이어가 적층으로 코팅된 투명전도성 고분자 필름의 전기 전도성, 광학 투과도 및 산화안정성)

  • Young Sil Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.456-462
    • /
    • 2023
  • An electrically conductive and transparent electrode was created by applying a dispersion of pristine single-walled carbon nanotubes (SWCNTs) and silver nanowires to a polyethylene terephthalate (PET) film using a bar coating method. The SWCNTs were added to increase the electrical conductivity and transmittance of the silver nanowires while also preventing the haze from increasing due to the stacking of multiple layers containing SWCNTs and silver nanowires on the PET substrate. The silver nanowires in the electrode were also found to be stable against oxidation. The transparent electrode displayed excellent electrical and optical properties, with a sheet resistance of 47 Ω/□, transmittance of 96.72%, and haze of 1.93%. Additionally, the sheet resistance of the electrode remained stable over time, with a change of only 6.4% after a constant temperature and humidity test, making it suitable for long-term use. A hybrid transparent electrode that is economically feasible and environmentally sustainable has been developed through the utilization of pristine SWCNT and silver nanowire.