Browse > Article
http://dx.doi.org/10.14478/ace.2020.1090

Synthesis of Cobalt Hydroxide Nanosheets based on Sonication-induced Exfoliation for Depolymerization of Polyethylene Terephthalate  

Jin, Se Bin (Department of Chemical Engineering, Kangwon National University)
Son, Seon Gyu (Department of Chemical Engineering, Kangwon National University)
Jeong, Jae-Min (Department of Nanoengineering, University of California San Diego)
Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.31, no.6, 2020 , pp. 668-673 More about this Journal
Abstract
In this work, ultrathin and two-dimensional (2D) cobalt hydroxide [Co(OH)2] nanosheets were synthesized by a sonication assisted liquid-phase exfoliation of bulk Co(OH)2. The resulting exfoliated Co(OH)2 is a hexagonal mono-layered nanosheet with a high specific surface area of 27.5 ㎡ g-1. The depolymerization of polyethylene terephthalate (PET) based on glycolysis reaction was also performed using an exfoliated Co(OH)2 catalyst. Excellent catalytic reaction performances were demonstrated; a high PET conversion and bis(2-hydroxyethyl) terephthalate (BHET) yield of both 100% using the nanosheet catalyst were achieved within a reaction time and temperature of 30 min and 200 ℃, respectively. The long-term stability of exfoliated Co(OH)2 catalysts was also demonstrated by recyclability tests of the catalyzed glycolysis reaction of PET over four cycles, showing both 100% of high PET conversion and BHET yield.
Keywords
Sonication; $Co(OH)_2$; Exfoliation; Polyethylene terephthalate; Glycolysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. Tournier, C. M. Topham, A. Gilles, B. David, C. Folgoas, E. Moya-Leclair, E. Kamionka, M.-L. Desrousseaux, H. Texier, S. Gavalda, M. Cot, E. Guemard, M. Dalibey, J. Nomme, G. Cioci, S. Barbe, M. Chateau, I. Andre, S. Duquesne, and A. Marty, An engineered PET depolymerase to break down and recycle plastic bottles, Nature, 580, 216-220 (2020).   DOI
2 A. B. Raheem, Z. Z. Noor, A. Hassan, M. K. A. Hamid, S. A. Samsudin, and A. H. Sabeen. Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review, J. Clean. Prod., 225, 1052-1064 (2019).   DOI
3 F. Awaja and D. Pavel, Recycling of PET, Eur. Poly. J., 41, 1453-1477 (2005).   DOI
4 D. Carta, G. Cao, and C. D, Angeli, Chemical recycling of poly (ethylene terephthalate) (PET) by hydrolysis and glycolysis, Environ. Sci. Pollut. Res., 10, 390-394 (2003).   DOI
5 M. Khoonkari, A. H. Haghighi, Y. Sefidbakht, K. Shekoohi, and A. Ghaderian, Chemical recycling of PET wastes with different catalysts, Int. J. Polym. Sci., 11, 1-11 (2005).
6 C. H. Chen, C. Y. Chen, Y. W. Lo, C. F. Mao, and W. T. Liao, Studies of glycolysis of poly(ethylene terephthalate) recycled from postconsumer soft‐drink bottles. I. Influences of glycolysis conditions, J. Appl. Polym. Sci., 5, 943-948 (2001).
7 G. R. Lima, W, F, Monteiro, R. Ligabue, and R. M. C. Santana, Titanate nanotubes as new nanostrutured catalyst for depolymerization of PET by glycolysis reaction, Mater. Res., 20, 588-595 (2017).   DOI
8 M. Imran. D. H. Kim, W. A. Al-Masry, A. Mahmood, A. Hassan, S. Haider, and S. M. Ramay, Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly(ethylene terephthalate) via glycolysis, Polym. Degrad. Stab., 1, 904-915 (2013).
9 A. Rahimi and J. M. Garcia, Chemical recycling of waste plastics for new materials production, Nat. Rev. Chem., 1, 46-56 (2017).   DOI
10 Plastic Insight, https://www.plasticsinsight.com/resin-intelligence/resin-prices/polyethylene-terephthalate/.
11 A. Yang, D. Wang, X. Wanga, D. Zhang, N. Koratkar, and M. Rong, Recent advances in phosphorene as a sensing material, Nano Today, 20, 12-32 (2018).
12 X. Zhang, M. Fevre, G. O. Jones, and R. M. Waymouth, Catalysis as an enabling science for sustainable polymers, Chem. Rev., 118, 839-885 (2018).   DOI
13 H. K. Webb, J. Arnott, R. J. Crawford, and E. P. Ivanova, Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate), Polymers, 5, 1-18 (2013).   DOI
14 H. Cui, Y. Zhao, W. Ren, M. Wang, and Y. Liu, Large scale selective synthesis of α-Co(OH)2 and β-Co(OH)2 nanosheets through a fluoride ions mediated phase transformation process, J. Alloys Compd., 562, 33-37 (2013).   DOI
15 Y. Xu, H. Cao, Y. Xue, B. Li, and W. Cai, Liquid-phase exfoliation of graphene: An overview on exfoliation media, techniques, and challenges, Nanomaterials, 8, 942 (2018).   DOI
16 A. Amiri, M. Naraghi, G. Ahmadi, M. Soleymaniha, and M. Shanbedi, A review on liquid-phase exfoliation for scalable production of puregraphene, wrinkled, crumpled and functionalized graphene and challenge, Flatchem, 8, 40-71 (2018).   DOI
17 X. Zhang, A. C. Coleman, N. Katsonis, W. R. Browne, B. J. van Wees, and B. L. Fering, Dispersion of graphene in ethanol using a simple solvent exchange method, Chem. Commun., 46, 7539-7541 (2010).   DOI
18 J. T. Sampanthar and H. C. Zeng, Arresting butterfly-like intermediate nanocrystals of β-Co(OH)2 via ethylenediamine-mediated synthesis, J. Am. Chem. Soc., 124, 6668-6675 (2002).   DOI
19 M. Ghaemy and K. Mossaddegh, Depolymerisation of poly(ethylene terephthalate) fibre wastes using ethylene glycol, Polym. Degrad. Stab., 90, 570-576 (2005).   DOI
20 T. Zhou, Z. Cao, H. Wang, Z. Gao, L. Li, H. Mab, and Y. Zhao, Ultrathin Co-Fe hydroxide nanosheet arrays for improved oxygen evolution during water splitting, RSC Adv., 7, 22818-22824 (2017).   DOI
21 K. Troev, G. Grancharov, R. Tsevi, and I. Gitsov, A novel catalyst for the glycolysis of poly(ethylene terephthalate), J. Appl. Polym. Sci., 90, 1148-1152 (2013).   DOI
22 M. R. Nabid, Y. Bide, N. Fereidouni, and B. Etemadi, Maghemite/nitrogen-doped graphene hybrid material as a reusable bifunctional catalyst for glycolysis of polyethylene terephthalate, Polym. Degrad. Stab., 144, 434-441 (2017).   DOI
23 M. Zhu, Z. Li, Q. Wang, X. Zhou, and X. Lu, Characterization of solid acid catalysts and their reactivity in the glycolysis of poly (ethylene terephthalate), Ind. Eng. Chem. Res., 51, 11659-11666 (2012).   DOI
24 J. M. Thomas and R. Raja, The advantages and future potential of single-site heterogeneous catalysts, Top. Catal., 40, 1-4 (2006).   DOI
25 H. Hwang, B. Kim, D. Woo, and M. Han, Depolymerization of PET by Ethylene Glycol, Korean Chem. Eng. Res., 47, 683-687 (2009).
26 S. Ugduler, K. V. Geem, R. Denolf, M. Roosen, N. Mys, K. Ragaert, and S. D. Meester, Towards closed-loop recycling of multilayer and coloured PET plastic waste by alkaline hydrolysis, Green Chem., 22, 5376-5394 (2020).   DOI
27 P. Jash, P. Srivastava, and A. Paul, Selective synthesis of single layer translucent cobalt hydroxide for efficient oxygen evolution reaction, Chem. Commun., 55, 2230-2233 (2019).   DOI
28 Y. Surendranath, M. W. Kanan, and D. C. Nocera, Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH, J. Am. Chem. Soc., 132, 16501-16509 (2010).   DOI