• Title/Summary/Keyword: 폴리비닐아세테이트

Search Result 46, Processing Time 0.035 seconds

Controlled Radical Polymerization of Vinyl Acetate in the presence of Tridecafluoro-n-hexyliodide(III) (비닐아세테이트의 조절된 라디칼 중합. III (요도드화물 존재 하에서))

  • 마석일;한규찬;김용일;권순홍
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.25-28
    • /
    • 2002
  • 비공역형 단량체인 비닐아세테이트(VAc)는 공역형 비닐계 단량체와 달리 라디칼의 활성이 너무 커서 중합 도중 빈번한 연쇄이동반응과 정지반응에 의해 분지구조의 고분자가 얻어지며 고분자량의 폴리비닐아세테이트를 얻기가 어려운 것으로 알려져 있다. 폴리비닐알코올(PVA)은 비닐알코을 단량체의 호변이성질화 때문에 단량체의 직적중합에 의해서는 얻을 수 없고 일반적으로 비닐아세테이트(VAc)를 라디칼 중합하여 얻어진 폴리비닐아세테이트(PVAc)를 비누화하여 합성한다. (중략)

  • PDF

Synthesis of Poly(vinyl acetate) Using Supercritical Carbon Dioxide and Subsequent Preparation of Poly(vinyl alcohol) (초임계이산화탄소를 이용한 폴리비닐아세테이트의 합성과 그로부터 폴리비닐알코올의 제조)

  • Choe, Woo-Hyuk;Pham, Quang Long;Shim, Jae-Jin
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.73-79
    • /
    • 2010
  • Vinyl acetate(VAc) was dispersion-polymerized using supercritical carbon dioxide that has many environmental advantages. To get poly(vinyl acetate) (PVAc) of larger molecular weights from conventional emulsion polymerization, VAc was polymerized at temperatures between 333.15 and 343.15 K and pressures between 20 and 40 MPa with initiator (0.5 ~ 5% of monomer) and silicone-based stabilizer (1 ~ 10% of monomer) for 2 ~ 50 hr. The resulting PVAc was analyzed to see the variations in the yield and the molecular weight. The final product of this research, PVA (poly(vinyl alcohol)), was prepared from PVAc by saponification. The effect of saponification conditions on the yield and the molecular weight of polymer were also studied.

Synthesis and Characterization of Poly(vinyl alcohol-co-vinyl stearate) (Poly(vinyl alcohol-co-vinyl stearate)의 합성 및 분석)

  • 이광호;조창기
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.191-194
    • /
    • 2002
  • 완전히 가수분해 된 폴리비닐알콜(PVA)는 쉽게 결정화되기 때문에 일부 가수분해된 PVA보다 에멜전 안정화와 계면활성이 약하다$^{1)}$ . 이러한 성질을 개선하려면 폴리비닐알콜분자에 hydrophobic한 알킬기를 도입하는 것이 주요한 방법이다. 폴리비닐알콜 분자에 긴 알킬기를 도입하는 방법에는 chain transfer 반응을 통하여 폴리비닐아세테이트(PVAc)분자의 말단에 긴 알킬기를 도입한 후 가수분해하는 방법$^{1)}$ ; 비닐아세테이트 (VAc)가 긴 알킬리를 가진 비닐 단량체와 copolymerization 한 후 가수분해하는 방법 $^{2),3)}$ ; 합성된 PVA가 긴 알킬리를 긴 알킬리를 가진 acyl chloride와 직접 반응하여 얻는 방법$^{4)}$ 등이 있다. (중략)

  • PDF

Emulsion Polymerization of Vinyl acetate-Butyl acrylate Copolymer (유화 중합에 의한 비닐 아세테이트-부틸 아크릴레이트 공중합체의 합성 연구)

  • 설수덕;임종민
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.135-142
    • /
    • 2004
  • Poly(vinyl acetate) (PVAc) prepared by emulsion polymerization has broad applications for additives such as paint binder, adhesive for wood and paper due to its low glass transition temperature which help to plasticize substrate resins. Since emulsion polymerization has a disadvantage that surfactant and ionic initiator degrade properties of the product polymer, poly(vinyl acetate-co-butyl acrylate) (VVc-BA) was synthesized using potassium persulfate as catalyst and poly(vinyl alcohol) (PVA) as protective colloid to prevent the degradation. The copolymer latex product was internally plasticized and has enhanced colloid stability, adhesion, tensile strength and elongation. During VAc-BA emulsion polymerization, no coagulation and complete conversion occur with the reactant mixture of 0.7wt% potassium persulfate, 15wt% poly(vinyl alcohol) (PVA-217), and the balanced monomer that the weight ratio of vinyl acetate to butyl acrylate is 19. As the concentrations of PVA increase, the copolymerization becomes faster and polymer particles are more stable, resulting in enhanced mechanical stability of the VAc-BA copolymer. However, the size of the polymer particles decreases with increasing PVA contents. Properties of the VAc-BA copolymer, such as minimum film formation temperature, glass transition temperature, surface morphology, molecular weight and molecular weight distribution, tensile strength and elongation, were characterized using differential scanning calorimeter, transmission electron microscope and other instruments.

Controlled Radical Polymerization of Vinyl Acetate in the presence of alkyliodide(II) (비닐아세테이트의 조절된 라디칼 중합. II (요도드화물 존재하에서))

  • 마석일;한규찬;김용일;권순홍
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.203-206
    • /
    • 2001
  • 산업용 섬유로서 그 사용 범위가 다양해질 것으로 예상되는 고강도, 고탄성률 폴리비닐알코올(PVA) 섬유를 얻기 위해서는 먼저 분지 구조가 없는 고분자량의 PVA의 합성이 필요하다. 그러나 비닐아세테이트와 같은 비공역형 단량체는 성장종 라디칼종의 활성이 매우 커서 성장반응 속도와 정지반응 속도가 매우 빠르므로 연쇄 이동반응이 빈번하게 일어나 고분자량의 중합체를 얻기 힘들고 또 분지구조를 갖게된다. (중략)

  • PDF

Morphology and Mechanical Properties of Recycled PVC Blends (III) - Morphologies and Mechanical Properties of Recycled PVC/PE Blends with Different Kinds of Compatibilizers and Mixing Conditions (폐폴리(염화 비닐)계 고분자 블렌드의 구조 및 물성 연구(III) -상용화제의 종류 및 혼합 조건에 따른 폐폴리(염화 비닐)/폴리에틸렌 고분자 블렌드의 형태학 및 물성)

  • 유영재;박재찬;원종찬;최길영;이재흥
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.468-477
    • /
    • 2004
  • The polymer blends of waste poly(vinyl chloride) (RPVC) and waste polyethylene (RPE) were prepared by melt mixing. Various ethylene-vinyl acetate copolymers (EVA) and ethylene-methacrylic acid Na salt copolymer (ionomer) were used as compatibilizer. Their morphologies and mechanical properties were evaluated as a funtion of mixing sequence and time. EVA with high vinyl acetate contents showed a rapid increment of tensile properties when small amount was added. Tensile properties of the blends were gradually increased with the addition of ionomer. Morphologies of RPVC/RPE blends were analyzed by scanning electron microscopy. FT-IR data showed that EVA was a good compatibilizer in RPVC/RPE blend compared to ionomer. Mechanical properties of the blends were highly enhanced when RPVC and compatibilizer were mixed and first RPE was added later.

Combustive Properties of Low Density Polyethylene and Ethylene Vinyl Acetate Composites Including Magnesium Hydroxide (저밀도 폴리에틸렌과 에틸렌 비닐 아세테이트에 수산화마그네슘을 첨가한 복합체의 연소성)

  • Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.69-75
    • /
    • 2011
  • It was performed to test the combustive properties of low density polyethylene and ethylene vinyl acetate (LDPE-EVA) composite by the addition of magnesium hydroxide. Flame retardant of natural magnesium hydroxide was added to the mixture of LDPE-EVA in 40 to 80 wt% concentration. The composite was compounded to prepare specimen for combustive analysis by cone calorimeter (ISO 5660-1). Comparing with virgin LDPE-EVA, the specimens including the magnesium hydroxide had lower flashover possibility. It is supposed that the combustive properties in the composites decreased due to the endothermic decomposition of magnesium hydroxide. The specimens with magnesium hydroxide showed both the lower total heat release rate (THR) and lower CO production rate than those of virgin polymer. As the magnesium hydroxide content increases, the total smoke release (THR) and smoke extinction area (SEA) decreased.

Preparation of Poly(Vinyl Acetate) in the Presence of Supercritical Carbon Dioxide (초임계이산화탄소를 이용한 폴리비닐아세테이트 합성)

  • Paek, Sang-Min;Noh, Seok-Kyun;Lyoo, Won Seok;Shim, Jae-Jin
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.191-197
    • /
    • 2006
  • Polymerization in supercritical carbon dioxide has been getting attention since it is easier to separate the remaining reactants from product polymer and since it is a cleaner process that produces neither wastewater nor air pollutants, compared to the conventional polymerization processes. In this study, poly(vinyl acetate) (PVAc) that is necessary in producing poly(vinyl alcohol) (PVA) with a lot of industrial applications was manufactured in the presence of supercritical carbon dioxide for the second time in the world. A poly(dimethylsiloxane)(PDMS)-derivative surfactant and three initiators were employed in the polymerization of vinyl acetate (VAc) at 338.15 K and 34.5 MPa. Investigation was carried out to find out the effect of the amounts and types of initiators and surfactants as well as the effect of reaction time on the yield and the molecular weight of PVAc. The weight average molecular weight (Mw) of PVAc was in the range of 60,000 ~ 140,000 g/mol, and the number average molecular weight was in the range of 30,000 ~ 70,000 g/mol. The yield of PVAc was spread over 10 ~ 80%, based on the amount of VAc monomer.

  • PDF