• Title/Summary/Keyword: 폴리머 유동

Search Result 64, Processing Time 0.042 seconds

DNS of Drag-Reduced Turbulent Channel Flow due to Polymer Additives (폴리머 첨가제에 의한 항력감소 난류 채널 유동장의 직접수치모사)

  • Kim, Kyoung-Youn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.799-807
    • /
    • 2010
  • Direct numerical simulations (DNS) of turbulent channel flow for which the drag is reduced by using polymer additives have been performed by a pseudo-spectral method. The Reynolds number based on the friction velocity and half-channel height is 395, and the polymeric stresses due to the polymer additives are evaluated using the FENE-P (finitely extensible nonlinear elastic-Peterlin) model. The numerical results show that the drag reduction rate is significantly affected by the parameters used in the FENE-P model, such as the maximum extensibility and relaxation time of the polymer molecules. The turbulence data for both low- and high-drag reduction regimes are analyzed. In addition, the effects of FENE-P model parameters on the flow characteristics have been investigated for the same drag reduction rate due to the polymer additives. Finally, the present DNS results have been used to verify the correlation between rheological parameters and the extent of drag reduction, which was suggested by Li et al. (2006).

A Study on the Mechanical Properties of Polymer Repair-Mortars with CFBC Ash (순환유동층 보일러애시를 활용한 폴리머 보수 모르타르의 역학적 특성에 대한 연구)

  • Kang, Yong Hak;Lim, Gwi Hwan;Shin, Dong Cheol;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.127-132
    • /
    • 2018
  • The amount of generated Circulating Fluidized Bed Combustion ash (CFBC ash) is annually increasing, but most CFBC ash has been landfilled and discarded due to the limited utilization. The major chemical compositions of CFBC ash are $SiO_2$, CaO and $CaSO_4$, which could form hydration products by reacting with water as self-cementing property such as cement. The purpose of the this study is to derive the optimal mix proportions to improve polymer-modified mortar with the use of CFBC ash which has the self-cementing property. In order to develop polymer-modified mortar, three mix proportions were determined, and fundamental properties for the mixtures were obtained. As a result, the optimal mixture containing 10 percent of silica fume, 1.0 percent of polymer and 3.5 percent of expansive additives were proposed in this study.

고집적 폴리머열교환기

  • O, Dong-Uk;Song, Chan-Ho;Park, Sang-Jin;Yun, Seok-Ho
    • Journal of the KSME
    • /
    • v.54 no.5
    • /
    • pp.45-48
    • /
    • 2014
  • 이 글에서는 최근 각광 받고 있는 기능성 소재 중 하나인 열전도성 폴리머 소재를 열교환기에 적용하기 위한 열유동 설계 기술에 대하여 논한다. 또한 폴리머열교환기가 기존 금속재질 열교환기와 비교하여 가지는 장단점을 살펴보고, 폴리머열교환기의 상용화 가능성에 대한 고찰을 하였다.

  • PDF

Evaluating rheological properties of excavated soil for EPB shield TBM with foam and polymer (폼과 폴리머를 활용한 EPB 쉴드 TBM 굴착토의 유동학적 특성 평가)

  • Byeonghyun Hwang;Minkyu Kang;Kibeom Kwon;Jeonghun Yang;Hangseok Choi
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.387-401
    • /
    • 2023
  • The Earth Pressure Balanced (EPB) Shield Tunnel Boring Machine (TBM) is widely employed for constructing urban underground spaces due to its minimal vibration and low noise levels. The injection of additives offers several advantages, including maintaining shield chamber pressure, reducing shear strength, minimizing cutter wear, and decreasing the permeability of the excavated soil. This technique is known as soil conditioning and involves the application of additives such as foam, polymer, and bentonite slurry. In this study, weathered granite soil commonly encountered at domestic tunnel sites was used as a soil specimen. Foam and polymer were applied as additives to assess the rheological properties of conditioned soils. The workability was evaluated through slump tests, while the rheological properties were assessed through laboratory pressurized vane shear tests conducted under the same conditions. Specially, the polymer was applied under specific conditions with low workability with high slump values, with the aim of evaluating the impact of polymer application. The test results revealed that with an increase in the Foam Injection Ratio (FIR), the slump value also increased, while the torque, peak strength, yield stress, apparent viscosity, and thixotropic area decreased. Conversely, an increase in the Polymer Injection Ratio (PIR) led to results opposite to those of FIR. Additionally, a correlation between the slump value and yield stress was proposed. When comparing conditions with only foam applied to those with both foam and polymer applied, even with similar slump values, the yield stress was found to be lower in the latter conditions.

Analytical Approach of Polymer Flow in Thermal Nanoimprint Lithography (열-나노임프린트 리소그래피 공정에서의 폴리머 유동에 대한 해석적 접근)

  • Kim, Kug-Weon;Kim, Nam-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.20-26
    • /
    • 2008
  • Nanoimprint lithography(NIL) is becoming next generation lithography of significant interest due to its low cost and a potential patterning resolution of 10nm or less. Success of the NIL relies on the adequate conditions of pressure, temperature and time. To have the adequate conditions for NIL, one has to understand the polymer flowing behavior during the imprinting process. In this paper, an analytical approach of polymer flow in thermal NIL was performed based on the squeeze flow with partial slip boundary conditions. Velocity profiles and pressure distributions of the polymer flow were obtained and imprinting forces and residual thickness were predicted with the consideration of the slip velocity between the polymer and the mold/substrate. The results show that the consideration of the slip is very important for investigating the polymer flow in Thermal NIL.

Evaluation of applicability of xanthan gum as eco-friendly additive for EPB shield TBM soil conditioning (친환경 첨가제로서 잔탄검의 토압식 쉴드 TBM 쏘일 컨디셔닝 적용성 평가)

  • Suhyeong Lee;Hangseok Choi;Kibeom Kwon;Byeonghyun Hwang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.209-222
    • /
    • 2024
  • The Earth Pressure Balance (EPB) shield Tunnel Boring Machine (TBM) is widely used for underground tunnel construction for its advantages, such as eliminating the need for additional facilities compared to the slurry shield TBM, which requires Slurry Treatment Plant (STP). During EPB shield TBM excavation, a soil conditioning technique is employed to enhance the physical properties of the excavated soil by injecting additives, thus broadening the range of applicable ground conditions to EPB shield TBMs. This study explored the use of xanthan gum, a type of biopolymer, as an alternative to the commonly used polymer additive. Biopolymers, derived from biological sources, are fully biodegradable. In contrast to traditional polymers such as polyacrylic acid, which contain environmentally harmful components, xanthan gum is gaining attention as an eco-friendly material due to its minimal toxicity and environmental impact. Test conditions with similar workability were established through slump tests, and the rheological characteristics were assessed using a laboratory pressurized vane shear test apparatus. The experiments demonstrated that, despite exhibiting similar workability, the peak strength in the flow curve decreased with increasing the content of xanthan gum. Consequently, a correlation between the xanthan gum content and peak strength was established. Replacing the traditional polymers with xanthan gum could enable stable EPB shield TBM operation by reducing equipment load, in addition to offering environmental benefits.

Experiment of Characteristic Diffusion Time of Viscoelastic Fluid by Particle Image Velocimetry (PIV를 이용한 점탄성 유체의 특성 확산시간에 대한 측정)

  • 전찬열
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.4
    • /
    • pp.251-256
    • /
    • 2002
  • The average diffusion time of a polyacrylamide solution was determined by measuring the terminal velocities of the falling balls. The diffusion time increased as the polyacrylamide concentration increased. The PIV (Particle Image Velocimetry) system was employed to visualize the flow phenomena around balls. For a time interval of 30 seconds in the 2000 wppm, velocity vectors were larger than in case of 0 seconds, 40 seconds and 50 seconds in the falling ball. However, in the Newtonian fluid, flow vsualization around balls were performed at both upstream and downstream of the falling ball.

  • PDF

Characterization of Acryl Polymer Concretes for Ultra Thin Overlays (초박층 덧씌우기용 아크릴 폴리머 콘크리트의 특성 연구)

  • Kim, Dae-Young;Kim, Tae-Woo;Lee, Hyun-Jong;Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2010
  • This study is performed to evaluate the physical and mechanical characteristics of an acryl polymer concrete that is developed as an overlay material for cement concrete slabs and pavements. Various laboratory tests including viscosity, flow, compressive strength, flexural strength, tensile strength, linear shrinkage, thermal expansion and thermal compatibility tests are performed. It is observed from the laboratory tests that the acryl polymer concrete developed in this study satisfies all the requirements suggested by ACI guideline. In addition to the laboratory tests, an accelerated performance testing (APT) is conducted to validate the performance of the acryl polymer concrete. During the APT, no significant distresses are observed until 15,903,939 cycles of equivalent single axle loading is applied. Finally, a 10mm thick overlay with the acryl polymer concrete is applied on top of an old deteriorated concrete pavement to evaluate field performance. Right after the field construction, skid resistance, noise and roughness are measured. The skid resistance and noise level have been significantly improved while the roughness is increased. Periodic investigation for the field study section will be conducted to evaluate the long-term performance.

Application of the Polymer Behavior Model to 3D Structure Fabrication (3차원 미세 구조물 제작을 위한 폴리머 유동 모델의 적용)

  • Kim, Jong-Young;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.123-130
    • /
    • 2009
  • This study presents the application of a polymer behavior model that considers fluid mechanics and heat transfer effects in a deposition system. The analysis of the polymer fluid properties is very important in the fabrication of precise microstructures. This fluid behavior model involves the calculation of velocity distribution and mass flow rates that include the effect of heat loss in the needle. The effectiveness of the proposed method was demonstrated by comparing estimated mass fluid rates with experimental values. The mass fluid rates under various process conditions, such as pressure, temperature, and needle size, reflected the actual deposition state relatively well, and the assumption that molten polycaprolactone(PCL) is a non-Newtonian fluid was reasonable. The successful fabrication of three-dimensional microstructures demonstrated that the model is valid for predicting the polymer behavior characteristics in the microstructure fabrication process. The results of this study can be used to investigate the effect of various parameters on fabricated structures before turning to experimental approaches.