DOI QR코드

DOI QR Code

Evaluation of applicability of xanthan gum as eco-friendly additive for EPB shield TBM soil conditioning

친환경 첨가제로서 잔탄검의 토압식 쉴드 TBM 쏘일 컨디셔닝 적용성 평가

  • Suhyeong Lee (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Hangseok Choi (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Kibeom Kwon (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Byeonghyun Hwang (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 이수형 (고려대학교 건축사회환경공학과) ;
  • 최항석 (고려대학교 건축사회환경공학과) ;
  • 권기범 (고려대학교 건축사회환경공학과) ;
  • 황병현 (고려대학교 건축사회환경공학과)
  • Received : 2024.03.11
  • Accepted : 2024.05.14
  • Published : 2024.05.31

Abstract

The Earth Pressure Balance (EPB) shield Tunnel Boring Machine (TBM) is widely used for underground tunnel construction for its advantages, such as eliminating the need for additional facilities compared to the slurry shield TBM, which requires Slurry Treatment Plant (STP). During EPB shield TBM excavation, a soil conditioning technique is employed to enhance the physical properties of the excavated soil by injecting additives, thus broadening the range of applicable ground conditions to EPB shield TBMs. This study explored the use of xanthan gum, a type of biopolymer, as an alternative to the commonly used polymer additive. Biopolymers, derived from biological sources, are fully biodegradable. In contrast to traditional polymers such as polyacrylic acid, which contain environmentally harmful components, xanthan gum is gaining attention as an eco-friendly material due to its minimal toxicity and environmental impact. Test conditions with similar workability were established through slump tests, and the rheological characteristics were assessed using a laboratory pressurized vane shear test apparatus. The experiments demonstrated that, despite exhibiting similar workability, the peak strength in the flow curve decreased with increasing the content of xanthan gum. Consequently, a correlation between the xanthan gum content and peak strength was established. Replacing the traditional polymers with xanthan gum could enable stable EPB shield TBM operation by reducing equipment load, in addition to offering environmental benefits.

토압식(Earth Pressure Balance) 쉴드 TBM (Tunnel Boring Machine)은 기계화 터널 굴착 공법 중 이수식(Slurry) 쉴드 TBM에 비하여 슬러리 처리 시설을 필요하지 않아 설비가 간단하고 진동과 소음이 적어 최근에 터널 시공에 널리 사용되고 있다. 토압식 쉴드 TBM으로 터널 굴착 시 첨가제를 활용하여 굴착토 물성을 개선하는 쏘일 컨디셔닝(soil conditioning) 기법을 적용하며, 이를 통해 토압식 쉴드 TBM을 적용할 수 있는 지반의 범위를 확장할 수 있다. 본 연구에서는 쏘일 컨디셔닝을 위한 첨가제로 주로 사용되는 폴리머를 대체할 수 있는 바이오폴리머(biopolymer)의 일종인 잔탄검(xanthan gum)의 적용성을 검토하였다. 바이오폴리머란 생물학적 기원으로 생성된 폴리머로써 모두 생분해가 가능하다. 환경에 유해한 성분을 함유하고 있는 일반 폴리머(폴리아크릴산계 폴리머)와 달리 잔탄검은 유독성이 거의 없고 환경에 미치는 영향이 적어 친환경 소재로 각광받고 있다. 슬럼프 시험을 통해 유사한 워커빌리티(workability)를 보이는 시험조건을 선정하고, 실내 가압 베인전단 시험을 통해 유동학적(rheological) 특성을 평가하였다. 유사한 슬럼프 값을 보이더라도 잔탄검의 함유량이 증가할수록 유동곡선(flow curve)상에 첨두강도가 감소하는 경향이 나타났으며, 이를 통해 잔탄검 함량과 첨두강도 사이의 상관관계를 도출하였다. 일반 폴리머를 잔탄검으로 대체한다면 환경친화적이라는 장점과 더불어 장비 부하를 감소시켜 안정적인 TBM 운용이 가능할 것이다.

Keywords

Acknowledgement

본 연구는 국토교통과학기술진흥원의 건설기술연구사업(RS-2022-00144188) 및 협력거점형 국토교통국제협력 연구개발사업(RS-2024-00410248)의 지원으로 수행되었으며 이에 깊은 감사를 드립니다.

References

  1. ASTM C143 (2017), Standard test method for slump of hydraulic-cement concrete, ASTM International, Vol. 04.02, pp. 1-4.
  2. ASTM D4648 (2016), Standard test method for laboratory miniature vane shear test for saturated fine grained clayey soil, ASTM International, Vol. 04.08, pp. 1-7.
  3. Avunduk, E., Copur, H., Tolouei, S., Tumac, D., Balci, C., Bilgin, N., Shaterpour-Mamaghani, A. (2021), "Possibility of using torvane shear testing device for soil conditioning optimization", Tunnelling and Underground Space Technology, Vol. 107, 103665.
  4. Chang, I., Im, J., Cho, G.C. (2016), "Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering", Sustainability, Vol. 8, No. 3, 251.
  5. Chang, I., Im, J., Prasidhi, A.K., Cho, G.C. (2015), "Effects of Xanthan gum biopolymer on soil strengthening", Construction and Building Materials, Vol. 74, pp. 65-72.
  6. Choi, J.Y. (2012), "A study on biopolymer as a future fiber material", Journal of the Korean Society of Design Culture, Vol. 18, No. 1, pp. 481-493.
  7. EFNARC (2005), Specification and guidelines for the use of specialist products for mechanised tunnelling (TBM) in soft ground and hard rock, European Federation of National Associations Representing for Concrete, pp. 1-45.
  8. Elliott, J.E., Macdonald, M., Nie, J., Bowman, C.N. (2004), "Structure and swelling of poly (acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure", Polymer, Vol. 45, No. 5, pp. 1503-1510.
  9. Galli, M., Thewes, M. (2019), "Rheological characterisation of foam-conditioned sands in EPB tunneling", International Journal of Civil Engineering, Vol. 17, pp. 145-160.
  10. Hu, W., Rostami, J. (2020), "A new method to quantify rheology of conditioned soil for application in EPB TBM tunneling", Tunnelling and Underground Space Technology, Vol. 96, 103192.
  11. Hwang, B., Kang, M., Kwon, K., Yang, J., Choi, H. (2023), "Evaluating rheological properties of excavated soil for EPB shield TBM with foam and polymer", Journal of Korean Tunnelling and Underground Space Association, Vol. 25, No. 5, pp. 387-401.
  12. Jancsecz, S., Krause, R., Langmaack, L. (1999), "Advantages of soil conditioning in shield tunnelling: experiences of LRTS Izmir", Challenges for the 21st Century: Proceedings of the World Tunnel Congress, Oslo, pp. 865-875.
  13. Jansson, P.E., Kenne, L., Lindberg, B. (1975), "Structure of the extracellular polysaccharide from Xanthomonas campestris", Carbohydrate research, Vol. 45, No. 1, pp. 275-282.
  14. Jung, J. (2018), "Soil-water characteristic curve of sandy soils containing biopolymer solution", Journal of the Korean Geo-Environmental Society, Vol. 19, No. 10, pp. 21-26.
  15. Karmakar, S., Kushwaha, R.L. (2007), "Development and laboratory evaluation of a rheometer for soil visco-plastic parameters", Journal of Terramechanics, Vol. 44, No. 2, pp. 197-204.
  16. Khemakhem, M., Attia, H., Ayadi, M.A. (2019), "The effect of pH, sucrose, salt and hydrocolloid gums on the gelling properties and water holding capacity of egg white gel", Food Hydrocolloids, Vol. 87, pp. 11-19.
  17. Kwak, J., Lee, H., Hwang, B., Choi, J., Choi, H. (2022), "A laboratory pressurized vane test for evaluating rheological properties of excavated soil for EPB shield TBM: test apparatus and applicability", Journal of Korean Tunnelling and Underground Space Association, Vol. 24, No. 5, pp. 355-374.
  18. Kwon, Y.M., Ham, S.M., Kwon, T.H., Cho, G.C., Chang, I. (2020), "Surface-erosion behaviour of biopolymer-treated soils assessed by EFA", Geotechnique Letters, Vol. 10, No. 2, pp. 106-112.
  19. Langmaack, L. (2000), "Advanced technology of soil conditioning in EPB shield tunneling", Proceedings of the North American Tunneling, Vol. 2000, Boston, pp. 525-542.
  20. Lee, H. (2021), Evaluation on performance of EPB shield tunnelling with foam conditioning, Ph.D. Thesis, Korea University, pp. 1-272.
  21. Lee, H., Kwak, J., Choi, J., Hwang, B., Choi, H. (2022), "A lab-scale experimental approach to evaluate rheological properties of foam-conditioned soil for EPB shield tunnelling", Tunnelling and Underground Space Technology, Vol. 128, 104667.
  22. Lee, H., Shin, D., Kim, D.Y., Shin, Y.J., Choi, H. (2019), "Study on EPB TBM performance by conducting lab-scaled excavation tests with different foam injection for artificial sand", Journal of Korean Tunnelling and Underground Space Association, Vol. 21, No. 4, pp. 545-560.
  23. Li, S., Wan, Z., Zhao, S., Ma, P., Wang, M., Xiong, B. (2022), "Soil conditioning tests on sandy soil for earth pressure balance shield tunneling and field applications", Tunnelling and Underground Space Technology, Vol. 120, 104271.
  24. Maidl, U. (1995), Erweiterung der Einsatzbereiche der Erddruckschilde durch bodenkonditionierung mit Schaum, Ph.D. Thesis, Institut fur Konstruktiven Ingenieurbau, Ruhr-Universitat Bochum, pp. 1-184.
  25. Melton, L.D., Mindt, L., Rees, D.A. (1976), "Covalent structure of the extracellular polysaccharide from Xanthomonas campestris: evidence from partial hydrolysis studies", Carbohydrate research, Vol. 46, No. 2, pp. 245-257.
  26. Meng, Q., Qu, F., Li, S. (2011), "Experimental investigation on viscoplastic parameters of conditioned sands in earth pressure balance shield tunneling", Journal of Mechanical Science and Technology, Vol. 25, No. 9, pp. 2259-2266.
  27. Merritt, A.S., Borghi, F.X., Mair, R.J. (2003), "Conditioning of clay soils for earth pressure balance tunnelling machines", Proceedings of the Underground Construction 2003, London, pp. 455-466.
  28. Messerklinger, S., Zumsteg, R., Puzrin, A. (2011), "A new pressurized vane shear apparatus", Geotechnical Testing Journal, Vol. 34, No. 2, pp. 112-121.
  29. Oh, J. (2021), Laboratory study on optimum foam injection condition for EPB shield TBM in weathered granite soil, Master Thesis, Korea University, pp. 1-96.
  30. Peila, D., Oggeri, C., Vinai, R. (2007), "Screw conveyor device for laboratory tests on conditioned soil for EPB tunneling operations", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 12, pp. 1622-1625.
  31. Petri, D.F.S. (2015), "Xanthan gum: A versatile biopolymer for biomedical and technological applications", Journal of Applied Polymer Science, Vol. 132, No. 23, pp. 1-13.
  32. Quebaud, S., Sibai, M., Henry, J.P. (1998), "Use of chemical foam for improvements in drilling by earthpressure balanced shields in granular soils", Tunnelling and Underground Space Technology, Vol. 13, No. 2, pp. 173-180.
  33. Sulaiman, H., Taha, M.R., Abd Rahman, N., Taib, A.M. (2022), "Performance of soil stabilized with biopolymer materials - xanthan gum and guar gum", Physics and Chemistry of the Earth, Parts A/B/C, Vol. 128, 103276.
  34. Sworn, G. (2021), Xanthan gum, In Handbook of Hydrocolloids, Woodhead Publishing, pp. 833-853.
  35. Wiszniewski, M., Cabalar, A.F. (2014), Hydraulic conductivity of a biopolymer treated sand, In New Frontiers in Geotechnical Engineering, ASCE, pp. 19-27.
  36. Zhou, X., Yang, Y. (2020), "Effect of foam parameters on cohesionless soil permeability and its application to prevent the water spewing", Applied Sciences, Vol. 10, No. 5, pp. 1787-1797.
  37. Zumsteg, R., Messerklinger, S., Puzrin, A.M., Egli, H., Walliser, A. (2009), "Pressurized vane shear test for soil conditioning", Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, pp. 275-278.