• Title/Summary/Keyword: 폴리머 경화

Search Result 229, Processing Time 0.025 seconds

Preparation of Graphene/Polybenzoxazine Conductive Composite Thin Film through Thermal Treatment (열 처리를 통한 그래핀/폴리벤족사진 전도성 복합 박막 제조)

  • Ko, Young Soo;Cha, Ji-Jung;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.513-517
    • /
    • 2013
  • A novel conductive composite thin film was prepared for the first time by hybridization between polybenzoxazine (PBZ) having high heat resistance property and conductive graphene. Mechanically robust conductive graphene/PBZ composite thin films could effectively be prepared by a simple thermal treatment, which simultaneously induces reduction of graphene oxide (GO) and crosslinking reaction of benzoxazine monomer. Graphene sheets seem to be uniformly dispersed up to 3 wt% graphene content in the composite thin film as shown in the results of chemical/crystal structural and morphological analyses. This efficient route for making graphene/PBZ composite thin film would provide simultaneous improvement of mechanical property as well as electrical conductivity.

Preparation of UV-Curable Polyurethane Modified $Acrylate/SiO_2$ Hybrid Film Using Sol-Gel Process (졸-젤 공정을 이용한 광경화형 폴리우레탄 변형 아크릴레이트/실리카 하이브리드 필름의 제조)

  • Nam, Dae-Woo;Nam, Byeong-Uk;Cha, Bong-Jun;Kim, Baek-Jin
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.111-116
    • /
    • 2007
  • Polyurethane modified acrylate $(PUA)/SiO_2$ hybrid films were prepared by ultraviolet curing and their surface properties were investigated by hardness and adhesion test. The films were examined by the manipulation of mole-ratio of organic to inorganic components. Under the silica content controlled, highly desirable films were achieved and scratch resistance and hardness property of film were also enhanced, which indicates that the crosslinked silica particles are homogeneously dispersed within PUA film.

The Characterization of Controlled Low Strength Material (CLSM) Using High CaO Fly Ash without Chemical Alkaline Activator (고칼슘 플라이애쉬를 이용한 알칼리 활성화제 무첨가 저강도 유동화 채움재 특성 평가)

  • Lim, Sanghyeong;Choo, Hyunwook;Lee, Woojin;Lee, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.17-26
    • /
    • 2016
  • The experimental investigation aims at developing controlled low strength materials (CLSM) using a self-cementitious fly ash (FA) as a binder and a bottom ash (BA) as a aggregate. The fly ash and bottom ash used in this study were obtained from a circulating fluidized bed combustion boiler (CFBC) which produces relatively high CaO containing fly ash. To find the optimum mixing condition satisfying flow consistency and unconfined compression strength (UCS), the CLSM specimens were prepared under various mixing conditions, including two types of aggregate and different weight fractions between fly ash and aggregate. Additionally, the prepared specimens were evaluated using a scanning electron microscope (SEM) and X-ray diffraction (XRD). The results of this study demonstrate that the water content satisfying flow consistency ranges from 42% to 85% and the flowability is improved with increasing the fraction of aggregate in whole mixture. The USC ranges from 0.3 MPa to 1.9 MPa. The results of UCS increases with increasing the fraction of aggregate in FA-sand mixtures, but decreases with increasing the fraction of aggregate in FA-BA mixtures. SEM images and XRD patterns reveal that the occurrence of both geopolymerization and hydration. The results of this study demonstrate that CFBC fly ash could be used as an alternative binder of CLSM mixtures.

Synthesis and Analysis of Multi-functional Urethane Acrylate Monomer, and its Application as Curing Agent for Poly(phenylene ether)-based Substrate Material (다관능 우레탄 아크릴레이트 단량체의 합성과 분석, 및 폴리페닐렌에테르 기판소재용 경화성분으로의 적용)

  • Kim, Dong-Kook;Park, Seong-Dae;Oh, Jin-Woo;Kyoung, Jin-Bum
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.413-419
    • /
    • 2012
  • Multi-functional urethane acrylate monomers as the curing agent of poly(phenylene ether) (PPE) were synthesized and then the urethane bond formation was checked by FTIR spectrometry and NMR analysis. The synthesized monomers were mixed with PPE and fabricated to dielectric substrates. After forming PPE/monomer composite sheets by a film coater, several sheets were laminated to a test substrate in a vacuum laminator and then its properties depending on the type and the amount of monomers, such as dielectric constant, dielectric loss, and peel strength, were measured. Between the two different hydroxyl acrylates, when the monomer synthesized with 2-hydroxy-3-phenoxypropyl acrylate containing a phenyl group was used as a curing agent, a smaller dielectric loss was obtained and the dielectric constant and loss decreased with a decrease in the amount of the monomer. The peel strength values of the test substrates, however, did not show any specific difference between the cases of two synthesized monomers. As a result, it was obtained the polymer substrate for high frequency application having peel strength of about 10 N, low dielectric constant of 2.54, and low dielectric loss of 0.0027 at 1 GHz.

Controlling the Location of Thermally Stable Au Nanoparticles with Tailored Surface Property within Block Copolymer Templates (열적으로 안정한 금나노입자를 이용한 블록공중합체 내에서의 입자위치 조절)

  • Kim, Se-Yong;Yoo, Mi-Sang;Jung, Se-Ra;Paek, Kwan-Yeul;Kim, Bum-Joon J.;Bang, Joona
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.238-243
    • /
    • 2011
  • Organic/inorganic hybrid materials have a lot of interest in various areas due to their fascinating properties. To control the location and dispersion of inorganic nanoparticles within polymer matrix. thiol-terminated polymeric ligands have been widely used to tune the surface property of nanoparticles. However, the specific binding between the thiol functional group and metal is unstable with increasing temperature. To archive the thermally-stable Au nanoparticles, we previously synthesized various UV-crosslinkable polymeric ligands, which have different compositions of polar, UV-crosslinkable azide unit comparing to non-polar 스티렌 units. After crosslinking the Au nanoparticles, it was found that the nanoparticles had superb stability at high temperature (above $180^{\circ}C$). In this work, we used thermally-stable Au nanoparticles to control the location within the polymer matrix. By changing the amount of polar azide units in the polymeric ligands, we could precisely control the location of nanoparticles from one domain to the interface of block copolymer templates.

Surface characteristics for thermal diffusion of FA-BFS-based geopolymer ceramics added alumina aggregate (알루미나 골재를 첨가한 FA-BFS계 지오폴리머 세라믹스의 열확산에 대한 표면 특성)

  • Kim, Jin-Ho;Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.61-70
    • /
    • 2019
  • Geopolymer is an eco-friendly construction material that has various advantages such as reduced $CO_2$ emission, fire resistance and low thermal conductivity compared to cement. However, it has not been many studies on the thermal behavior of the surface of the geopolymer panel when flame is applied to the surface. In this study, surface characteristics of hardened geopolymer on flame exposure was investigated to observe its characteristics as heat-resistant architectural materials. External structure changes and crack due to the heat shock were not observed during the exposure on flame. According to the residue of calcite and halo pattern of aluminosilicate gel, decarboxylation and dehydration were extremely limited to the surface and, therefore, it is thought that durability of hardened geopolymer was sustained. Gehlenite and calcium silicate portion was inversely proportional to quartz and calcite and significantly directly proportional to BFS replacement ratio. Microstructure changes due to the thermal shock caused decarboxylation and dehydration of crystallization and it was developed the pore and new crystalline phase like calcium silicate and gehlenite. It is thought that those crystalline phase worked as a densification and strengthening mechanism on geopolymer panel surface.

Evaluation of Aging Characteristics of Selected PMA using HP-GPC (HP-GPC를 이용한 폴리머개질 아스팔트의 노화특성 분석)

  • Kim, Kwang-Woo;Doh, Young-Soo;Amerkhanian, Serj N.
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.15-24
    • /
    • 2004
  • Oxidation causes increment of the quantity of large molecular size or LMS in asphalt and is a major reason for hardening of asphalt binder. An extended service life of pavement on a road is expected by reducing oxidation of binder. Oxidation of binder occurs during hot mixing with aggregates before placement on road and then during in-service after the asphalt pavement is constructed. Quantitative increase of LMS as result of aging after RTFO and PAV was analyzed based on the data from high-pressure gel-permeation chromatography (HP-GPC). Polymer modified asphalt (PMA) after RTFO procedure showed 20-30% increment in LMS and then after PAV procedure more than twice, although the percentage of increment was different according to asphalt brand and grade. The PMAs containing LDPE or SBS, which showed a great mechanical property improvement in previous studies, were selected for characterizing PMA aging In this study. Considerably reduced increment of LMS was observed from the PMA containing LDPE after RTFO and PAV procedures. The GPC result showing the binder with less LMS increment means that the asphalt while being mixed with LDPE was aged less during the aging treatment. The dispersed particle of LDPE in asphalt cement seems to disturb oxidative aging reaction and evaporation.

  • PDF

Synthesis of Novel Prepolymers Containing No Bisphenol A and Preparation of Organic Matrices for Dental Applications (비스페놀 A를 함유하지 않은 치과용 신규 프리폴리머의 합성 및 유기 매트릭스의 제조)

  • Son, Jun-Sik;Lee, Ki-Baek;Park, Kwi-Deok;Kim, Jae-Jin;Ahn, Kwang-Duk;Kim, Jung-Hyun;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.538-544
    • /
    • 2006
  • Two kinds of novel bifunctional methacrylated prepolymers (170-2MA and 631-2MA) which have similar structure with 2,2-bis[4- (2'-hynroxy-3'-methacryloyloxypropoxy)phenyl] propane (Bis-GMA) was synthesized for dental applications as an alternative to Bis-GMA containing bisphenol A that is doubtful as an endocrine disrupter. The organic matrices were prepared by mixing a diluent and/or a monomer with the synthesized methacrylated prepolymers. The yield, viscosity, and chemical structures of the prepolymers and the physical and methanical properties of the organic matrices were evaluated. The yields of the prepolymers synthesized through a ring-opening reaction of epoxy compound and methacrylic acid were above 90% and the viscosities of the prepolymers were much lower than that of the Bis-GMA control. From the results of $^1H-NMR$ and FTIR analyses, the chemical structures of the prepolymers were similar to that of Bis-GMA. In addition, the curing time, poly-merization shrinkage, photoconversion, polymerization depth, and compressive strength of the organic matrices formulated with 170-2MA and 631-2MA prepolymers exhibited comparable to or better than those of the existing Bis-GMA-based one. These results suggest that the novel methacrylated prepolymers which have no endocrine disrupter can be an alternative to Bis-GMA and be applicable to dental polymer materials.

Preparation and Adhesion of One Part Room Temperature Curable Alkoxy Type Silicone Sealant (일액형 알코올형 실리콘 실란트의 제조 및 접착 물성)

  • Kim, Dae-Jun;Park, Young-Jun;Kim, Hyun-Joong;Lee, Bong Woo;Han, Jae Chul
    • Journal of Adhesion and Interface
    • /
    • v.2 no.4
    • /
    • pp.1-9
    • /
    • 2001
  • Silicone sealants are composed of polymer, plasticizer, crosslinker, catalyst and filler. Types and compositions of components are effected on sealant performances. In recent, use of alkoxy type silicone sealant increased due to environmental advantage. In this study, we investigated effects of component types and ratios on one-part room temperature curable alkoxy type silicone sealant preparation and adhesion properties. Alkoxy type silicone sealants were prepared with various PDMS (polydimethylsiloxane) viscosities. In addition, the effect of plasticizer, crosslinkers, and catalyst on sealant obtained from by mixture of PDMS viscosities of 20000 and 80000 was investigated. Reaction temperature on change of mixing time was observed, and then proper crosslinking systems were found. Adhesion (properties) of silicone sealants were measured. In the sealants preparation, stable reaction was achieved by adjusting composition variance ratio in the sealant mixture temperature below $40^{\circ}C$. The adhesion properties of sealant differ from substrate composition. The order of adhesion strength was glass/glass > glass/aluminum > aluminum/aluminum system. The elongation of sealant was increased as polymer viscosity and plasticizer content increased. The strength was increased as crosslinker and plasticizer decreased, while catalyst increased.

  • PDF

Surface and Chemical Properties of Surface-modified UHMWPE Powder and Mechanical Properties of Self Curing PMMA Bone Cement Containing UHMWPE Powder I. Effect of MMA/Xylene Contents on Surface Modification of UHMWPE (표면개질된 초고분자량 폴리에틸렌 분말의 표면과 화학적 특성 및 이를 함유하는 상온 경화용 폴리(메틸 메타크릴레이트) 뼈 시멘트의 기계적 특성 I. 메틸 메타크릴레이트/자일렌 함량에 따른 초고분자량 폴리에틸렌의 표면 개질 효과)

  • 양대혁;윤관희;김순희;이종문;강길선
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.77-85
    • /
    • 2004
  • It has been widely used ultra high molecular weight polyethylene (UHMWPE) for the biomaterials due to its excellent mechanical properties and biocompatibility. In the case of blend of UHMPE with another polymeric biomaterials, however, UHMWPE might have low blend compatibility due to surface inertness. In this study, in order to improve the mechanical properties of poly(methyl methacrylate) (PMMA) bone cement by means of the impregnation of UHMWPE powder, we developed the novel surface modification method by the mixture of methyl methacrylate (MMA) and xylene. We investigated the variation of composition of MMA/xylene. It was confirmed by the analysis of Fourier transform infrared-attenuated total reflectance, scanning electron microscope, universal transverse mercator, and digital thermometer. The maximum mechanical strength of surface modified UHMWPE powder impregnated PMMA bone cement compound was observed the ratio of 1 : 1 (v/v%) MMA/xylene. Also its curing temperature decreased from 103 $^{\circ}C$ to 58 ∼ 73 $^{\circ}C$ The mechanism of surface modification of UHMWPE powder by the mixture of MMA/xylene has been proposed.