• Title/Summary/Keyword: 폭

Search Result 10,611, Processing Time 0.051 seconds

Permeability of Cracked Concrete as a Function of Hydraulic Pressure and Crack Width (수압과 균열폭 변화에 따른 콘크리트 투수계수의 실험적 연구)

  • Hyun, Tae-Yang;Kim, Chin-Yong;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.291-298
    • /
    • 2008
  • Cracks in concrete generally interconnect flow paths and increase concrete permeability. The increase in concrete permeability due to the progression of cracks allows more water or aggressive chemical ions to penetrate into concrete, facilitating deterioration. The goal of this research is to study the relationship between crack width and water permeability of cracked concrete. Tests have been carried out as a function of hydraulic pressure (0.1 $\sim$ 2 bar) and crack width (30 $\sim$ 100 ${\mu}m$). Splitting and reuniting method was used to manufacture cracked concrete specimens with controlled crack width. Crack widths are checked by using a microscope($\times$100). The results show a considerable increase of water transport with crack width and hydraulic pressure. When the crack width is smaller than 50${\mu}m$, the crack width has little effect on concrete permeability. Due to the autogenous healing, the water flow through the crack gradually reduces with time. When crack width is 100 ${\mu}m$ and hydraulic pressure increase from 0.1 bar to 0.25 bar, concrete permeability increases rapidly about 190 times according to the test results.

An Experimental Study on the Flexural Behavior for T-joints with Square Hollow Structural Sections (각형강관 T형 접합부의 휨거동에 관한 실험 연구)

  • Park, Keum Sung;Lee, Sang Sup;Choi, Young Hwan;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.211-219
    • /
    • 2009
  • The purpose of the study described in this paper was to experimentally investigate branch squared T joints with cold formed hollow structural sections under the in plane moment in a Vierendeel Truss. The branch in the T joints was welded to the upper flange of the chord. The main experimental parameters were the ratio of the width to the thickness of the chord ($2{\gamma}$), with ${16.7{\leq}2{\gamma}{\leq}33.3}$, and the width ratio of the branch to the chord ($\beta$), with ${0.40{\leq}{\beta}{\leq}0.71}$. Nine specimens were tested and manufactured in joints under the in plane bending moment. Based on the results of the test, the in plane moment strength of the branch squared T joints was determined according to the bending deformation of the chord flange yielding, regardless of the ratio of the width to the thickness of the chord and the ratio of the width of the branch to the width of the chord. Also, the in plane moment strength of the branch squared T joints in the hollow structural sections can be defined as 1.5 times the moment load at M1%B the strength of the joints that governed the serviceability in the control group. Finally, the experimental results with the branch squared T joints show that the in lane moment strength of the joint increased as $2{\gamma}$ decreased and $\beta$ increased.

Narrow channel effect on the electrical characteristics of AlGaN/GaN HEMT (AlGaN/GaN HEMT의 채널폭 스케일링에 따른 협폭효과)

  • Lim, Jin Hong;Kim, Jeong Jin;Shim, Kyu Hwan;Yang, Jeon Wook
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.71-76
    • /
    • 2013
  • AlGaN/GaN HEMTs (High electron mobility transistors) with narrow channel were fabricated and the effect of channel scaling on the device were investigated. The devices were fabricated using e-beam lithography to have same channel length of $1{\mu}m$ and various channel width from 0.5 to $9{\mu}m$. The sheet resistance of the channel was increased corresponding to the decrease of channel width and the increase was larger at the width of sub-${\mu}m$. The threshold voltage of the HEMT with $1.6{\mu}m$ and $9{\mu}m$ channel width was -2.85 V. The transistor showed a variation of 50 mV at the width of $0.9{\mu}m$ and the variation 350 mV at $0.5{\mu}m$. The transconductance of 250 mS/mm was decreased to 150 mS/mm corresponding to the decrease of channel width. Also, the gate leakage current of the HEMT decreased with channel width. But the degree of was reduced at the width of sub-${\mu}m$. It was thought that the variation of the electrical characteristics of the HEMT corresponding to the channel width came from the reduced Piezoelectric field of the AlGaN/GaN structure by the strain relief.

Evaluation of Shear Strength by Experiment and Finite Element Analysis of SFRC Hollow Members (SFRC 중공 부재의 실험 및 유한요소 해석에 의한 전단강도 평가)

  • Kim, Seong-Eun;Jeong, Jae-Won;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.78-85
    • /
    • 2019
  • This study targets SFRC hollow members with small depth under shear force and bending. To evaluate the effect of web width on shear strength of SFRC members, experiment and finite element analysis were conducted and compared with existing equations. The web width was planned to be 1/2 times and 2/3 times, and the shear span ratio was planned to be 1.5 times. In the shear test results, the maximum shear strength increased by 10.3 to 28.0% with the web width increased by 33%. When the overall depth of specimens was increased by 1.5 times, the shear strength of the specimen with a web width of 100mm was increased by 29.2%. On the other hand, specimen with the 150mm only increased by 11.3%. These results indicate that the smaller the web width, the greater the shear strength increase with the increase of depth. Also, the smaller the web width, the greater the contribution of steel fiber. It has been shown that the KCI code evaluates the shear strength of experiments as very safe side, and that the proposed formula of Shin et al. predicts the experimental strength relatively well. As the web width increases by 2, 3, and 6 times, the mean shear strength by FEA appears to be 1.18, 1.80, and 2.19 times respectively. This indicates that the shear strength does not increase in proportion to the increase in web width.

Development of a Probabilistic Joint Opening Model using the LTPP Data (LTPP Data를 이용한 확률론적 줄눈폭 예측 모델 개발)

  • Lee, Seung Woo;Chon, Sung Jae;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.593-600
    • /
    • 2006
  • Joint opening of jointed concrete pavement is caused by change in temperature and humidity of adjoined slab. The magnitude of joint opening influences on the load-transfer-efficiency and the behavior of sealant. If temperature or humidity decreases, joint opening increases. Generally maximum joint opening of a given joint is predicted by using AASHTO equation. While different magnitudes of joint opening at the individual joints have been observed in a given pavement section, AASHTO equation is limited to predict average joint opening in a given pavement section. Therefore the AASHTO equation may underestimate maximum joint for the half of joint in a given pavement section. Joints showing larger opening than the designed may experience early joint sealant failure, early faulting. Also unexpected spalling may be followed due to invasion of fine aggregate into the joints after sealant pop-off. In this study, the variation of the joint opening in a given pavement section was investigated based on the LTPP SMP data. Factors affecting on the variation are explored. Finally a probabilistic joint opening model is developed. This model can account for the reliability of the magnitude of joint opening so that the designer can select the ratio of underestimated joint opening.

Crack Width Control and Flexural Behavior of Continuous Composite Beams (연속합성보의 균열폭 제어와 휨거동 평가)

  • Shim, Chang Su;Kim, Hyun Ho;Yun, Kwang Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.195-206
    • /
    • 2005
  • Experimental research was performed on the 6m-6m two-span, continuous composite beams. Background research for the crack width control of continuous composite bridges in the Eurocode-4 is reviewed and equationsfor the calculation of crack width considering tension stiffening are presented. The behavior of the continuous composite beams was investigated using the initial and stabilized cracking process of the concrete slab in tension. Test results showed that the current requirement of minimum reinforcement for ductility in Korea Highway Bridge Design Codes could be reduced. The flexural stiffness of cracked continuous composite beams can be evaluated by the uncracked section analysis until the stabilized cracking stage. An empirical equation for the relationship between the stress of tensile reinforcements and crack width was obtained from the test results.

Performance of the Metal Insert Filter with Improved Stopband Characteristic (차단대역 특성이 개선된 금속삽입 필터의 성능평가)

  • 김병수;전계석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6A
    • /
    • pp.818-824
    • /
    • 2000
  • For the purpose of improving the stopband characteristics, the filter structure having single or double inserted metal plates in the waveguide of a reduced width have been widely stdudied so far. Usually such structures have a waveguide junction discontinuity between two waveguides of different widths. In designing such structures, we should always minimize the insertion loss due to the juction discontinuity. Besides it is difficult to fabricate the junction with desired accuracy. Here we consider new structure of tripple metal insert filter without the junction discontinuity problem, which is more suitable for mass production. An optimization procedure is taken with manufacturing error 0.1mm of inserted metal length. The theory agrees well with experimental data. so, it is show that fabrication of triple metal insert filter is more profitabel by optimization process.

  • PDF

Effect of Stripe Width on Threshold in Single Quantum Well Laser Diodes (단일양자우물 Laser Diode에서 Stripe 폭이 문턱치에 미치는 영향)

  • 이성재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.3
    • /
    • pp.591-596
    • /
    • 1994
  • Threshold dependence on stripe width in gain-guided single quantum well lasers has been examined by complex domain effective index method. It is found, in narrow stripe regime, that the lateral optical confinement estimated by newly introduced parameters decreases very rapidly as the transverse optical confinement factor decreases. Thus, in a single quantum well laser with a usually very small, the optical confinement may become very poor depending on stripe width not only in the transverse but also in the lateral direction, further enhancing the gain saturation and often leading to an anomalously high threshold current. The understanding of rather anomalous threshold dependence on stripe width will be very important in optimization of quantum well laser diode structure.

  • PDF

Tunnel Behavior According to the Pillar Width (터널의 필러부 폭에 따른 터널거동)

  • Kim, Youngsu;Kwon, Taesoon;Jeong, Ilhan;Kim, Kwangil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.15-23
    • /
    • 2009
  • This research area is a greate section of triple tunnels that passes through the fault fractured zone the in the granite area. In this area, tunnel section, pillar width and overburden height are changed consecutively due to declivity of 1 : 4.5 and slope formation of upper part as changed section. That is, stability estimation for each section varying pillar width can be conducted because tunnel diameter changes gradually from 0.5D to 1.0D according to distance of pillar width. We have estimated the stability of pillar width in triple tunnels with monitoring value, and compared the stability with results of numerical analysis.

  • PDF

Stability Assessment of Underground Limestone Mine Openings by Stability Graph Method (Stability graph method에 의한 석회석 지하채굴 공동의 안정성 평가)

  • Sunwoo Choon;Jung Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.369-377
    • /
    • 2005
  • The stability of underground openings is a major concern for the safety and productivity of mining operations. Rock mass classification methods provide the basis of many empirical design methods as well as a basis for numerical analysis. Of the many factors which influence the stability of openings, the span of the opening for a given rock mass condition provides an important parameter of design. In this paper, the critical span curves proposed by Lang, the Mathews stability graph method and the modified critical span curve suggested by the authors have been assessed. The modified critical span curve was proposed by using Mathews stability graph method. The modified critical span curve by the author have been used to assess the stability of underground openings in several limestone mines.