• Title/Summary/Keyword: 폭발시험

Search Result 229, Processing Time 0.023 seconds

Influence of the Magnesium Content on the Explosion Properties of Mg-Al Alloy Dusts (Mg-Al합금 분진의 폭발특성에 미치는 마그네슘 성분의 영향)

  • Han, Ou-Sup;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.1-6
    • /
    • 2012
  • Using the Siwek 20 L spherical explosion vessel, the explosion properties have been examined to understand the influence of magnesium content in Mg-Al alloy dusts with different concentration. For this purpose, the Mg-Al alloy dusts (volume mean diameter : $151{\sim}160{\mu}m$) with magnesium content ratio were used. As the results, the increase of Mg content in Mg-Al alloy causes an decreased minimum explosion concentration and an increased maximum explosion pressure. Also the maximum explosion pressure and maximum rate of pressure rise in Mg-Al alloy dusts mainly depended on the dust concentrations. However, for the explosion index (Kst) of Mg-Al (40:60 wt%), Mg-Al (50:50 wt%) and Mg-Al (60:40 wt%), it was founded to increase the Kst with increasing of magnesium content ratio.

Explosion Properties of Nano and Micro-sized Aluminium Particles (나노 및 마이크로 입자 알루미늄의 폭발 특성)

  • Han, Ou-Sup;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.20-25
    • /
    • 2014
  • Explosion characteristics of micro-sized aluminum dusts had been studied by many researchers, but the research of nano-sized aluminum dusts were very insufficient. In this study, an experimental investigation was carried out on the influences of nano and micro-sized aluminum dusts (70 nm, 100 nm, $6{\mu}m$, $15{\mu}m$) on dust explosion properties of aluminum particles by using 20 L explosion apparatus. With decreasing of particle size in suspended aluminum dusts, the LEC (lower explosion concentration) of nano-sized aluminum is lower than that of micro-sized aluminum. The particle size change of nano-sized aluminum dusts seems no obvious explosion differences than that of micro-sized aluminum dusts. From the observation of nano-sized aluminum particles by TEM (Transmission Electron Microscopy), it is estimated that increase of particles aggregation may have effects on the explosion characteristics of aluminum nanopowders.

Effect of Powder Condition on the Fire and Explosion Characteristics of Suspended and Deposited Dusts (부유 및 퇴적의 분체 조건이 화재폭발 특성에 미치는 영향)

  • Han, Ou-Sup;Seo, Dong-Hyun;Choi, Yi-Rac;Lim, Jin-Ho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.229-236
    • /
    • 2022
  • An experimental investigation was conducted on the influences of median size, dust concentration, dust condition (cloud and layer) for the fire and explosion hazard assessment of dusts with the same powder property. For this purpose, tests have been performed in accordance with 20 L explosion sphere, thermogravi- metric analyze, combustion rate tester (UN method). We investigated the explosion characteristics and flame propagation velocity (FPV) in dust cloud and the flame spread velocity(FSV) over dust layer on 8 dust samples with different particle sizes of 4 types of dusts (Sugar, Mg, Al, Zr). An explosion hazard increased with decreasing particle size in Mg and Al dust clouds, but sugar did not show the effect of explosion hazard due to particle size change in dust clouds. The flame propagation velocity (FPV) of suspended dusts increased significantly when the particle size decreased from micro to nano than the variation of particle size in micro range. The flame spread velocity (FSV) over dust layer showed a tendency to increase over the inclined dust layers (30° slope) rather than the horizontal dust layers (0° slope). The flame spread rate (FSV) over dust layers increased on the inclined dust layer (30° slope) rather than the horizontal dust layer (0° slope) and was higher upward flame than the downward flame in condition of inclined dust layers(30° slope).

UL이란?

  • 장한용
    • Product Safety
    • /
    • s.24
    • /
    • pp.29-34
    • /
    • 1994
  • UL(Underwriters Laboratories Inc)은 미국의 대표적인 비영리 민간 안전시험기관이다. UL마크는 세계적으로 권위가 있다. 특히 미국내에서 소비자인지도 및 주정부의 강제적용에 힘입어 UL인증없이는 시장 유통이 어려운 실정이다. 공산품에 대한 단체 임의 인증 마크로서 전기, 전자제품, 건축재료, 해양장비(선박)등을 대상으로 화재, 폭발관련 안전성 시험에 합격하고 공장심사 및 사후관리 협정을 맺은후 마크가 부여 된다.

  • PDF

Consequence Analysis and Risk Reduction Methods for Propulsion Test Facility (추진시험설비의 사고피해영향분석 및 리스크 감소방안)

  • Shin, Ahn-Tae;Byun, Hun-Soo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.360-366
    • /
    • 2016
  • The Propulsion Test Facilities for the development of Korea Space Launch Vehicle-II are being built, some test facilities are completed and various combustion tests are running. The Propulsion Test Facilities consists test-stand, which carries out tests for engine development model, and various sub-systems and vessels containing LOX and Jet A-1 as propellant. There are always risks of fire and explosion at the test-stand since engine development model is conducted at test-stand with real combustion test with very high pressure, mixed propellant and high energy. In this paper, in order to establish the consequence analysis and risk reduction measures in the Propulsion Test Facilities, followings are considered. 1) a propellant leak accident scenario is assumed in test-stand. 2) TNT equivalent model equation based on blast wave of the explosion was used to analyze blast overpressure and impacts. Also, technical, systematic and managemental measure is described to ensure risk reduction for propulsion test facility.

A Study on the Explosion Pressure Behavior of Methyl Ethyl Ketone Peroxide with Addition of Sulfuric Acid (황산의 첨가에 따른 Methyl Ethyl Ketone Peroxide의 폭발압력거동에 관한 연구)

  • Choi Jae-Wook;Jung Doo-Kyun;Choi Il-Gon
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.50-54
    • /
    • 2004
  • To examine the danger of explosion caused by decomposition explosion of Methyl Ethyl Ketone Peroxide, the mini cup pressure vessel tester (MCPVT) was used in the experiment. The maximum explosion pressure increased as the amount of $98\%H_2SO_4$ added to MEKPO increased from $0\%$ to $1\%,\;3\%$, and $5\%$, and the maximum pressure rising velocity increased as well. In addition, the temperature under the pressure at which decomposition starts decreased from $168.16^{\circ}C$ to $126.76^{\circ}C,\;91.21^{\circ}C$, and $81.25^{\circ}C$ as the amount of $H_2SO_4$ added increased.

  • PDF

Explosion Hazards and Flame Velocity in Aluminum Powders (알루미늄 분체의 폭발위험성과 화염전파속도)

  • Han, Ou-Sup;Lee, Su-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.7-13
    • /
    • 2012
  • An experimental study has been done to investigate the explosion characteristics of aluminum powders with different sizes and concentrations in a 20 L spherical explosion vessel. Two different sizes of aluminum powder were used : $15.1{\mu}m$ and $34.8{\mu}m$ with a volume mean diameter. The results revealed that $15.1{\mu}m$ Al powder has a Lower explosion limit (LEL) of $40g/m^3$, a maximun explosion pressure ($P_{max}$) of 9.8 bar and a maximum rate of pressure rise ($[dP/dt]_{max}$) of 1852 bar/s, in $34.8{\mu}m$ Al powder, LEL of $70g/m^3$, $P_{max}$ of 7.9 bar and $[dP/dt]_{max}$ of 322 bar/s. The LEL of Al powders tended to increase with the increase of particle size. Also, it was found that the flame velocity calculated from the powder with $15.1{\mu}m$ was about 5 times higher than that of the powder of $34.8{\mu}m$.

Effect of Mean Diameter on the Explosion Characteristic of Magnesium Dusts (마그네슘의 폭발특성에 미치는 평균입경의 영향)

  • Han, Ou-Sup;Lee, Su-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.33-38
    • /
    • 2013
  • A study was carried out on the effect of particle size (mean diameter) on magnesium dust explosion. Experimental investigations were conducted in a 20-L explosion sphere, using 10 kJ chemical ignitors. Explosion tests were performed with three different dusts having mean diameter (38, 142, $567{\mu}m$) and the dust concentrations were up to $2250g/m^3$. The lower explosion limits(LEL) of magnesium dusts were about $30g/m^3$ at $38{\mu}m$ and $40g/m^3$ at $142{\mu}m$. LEL tended to increase with particle size and this means that the explosion probability of magnesium dust decreased with increase of particle size. The maximum explosion presssure ($P_m$) and $K_{st}$ (Explosion index) decreased with the increase of particle size. For magnesium powder of $567{\mu}m$, however, the explosive properties were not observed in the 5 kJ ignition energy.

An Evaluation of Minimum Explosible Concentration and Explosion Severity of Coal Dust in a Thermal Power Plant (화력발전소용 석탄분진의 최소폭발농도와 폭발강도 평가)

  • Yeosong Yoon;Keun-won Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.62-69
    • /
    • 2023
  • The use of low-grade coal is continuously increasing with the development of combustion technology and cost reduction for coal used in thermal power plants . During combustion, the latent heat of evaporation due to moisture is large, and there is a risk of spontaneous combustion and dust explosion during the process of storing and pulverizing coal. This study compared and evaluated the minimum explosive concentration and explosive strength of four types of coal dust-fine, coal dust-coarse, wood pallet+organic dust, and wood chip with coal powder collected from domestic power plant D. The minimum explosive concentration of coal dust was measured according to JIS Z 8818:2002, and the explosion strength was tested according to ASTM E1226 using a Siwek 20 L Chamber Apparatus. As a result of the minimum explosive concentration test, it was found that coal dust-fine has a risk of dust explosion, and since an explosion occurs at a dust concentration of 130 g/m3 of wood chips, it was found that there is a risk of explosion at the lowest dust concentration. According to the dust explosion class standard, Kst is less than 200 bar m/s, and all samples fall under the explosion class St 1, and the dust has a low risk of explosion.