DOI QR코드

DOI QR Code

나노 및 마이크로 입자 알루미늄의 폭발 특성

Explosion Properties of Nano and Micro-sized Aluminium Particles

  • 한우섭 (한국산업안전보건공단 산업안전보건연구원) ;
  • 이근원 (한국산업안전보건공단 산업안전보건연구원)
  • Han, Ou-Sup (Occupational Safety & Health Research Institute, KOSHA) ;
  • Lee, Keun-Won (Occupational Safety & Health Research Institute, KOSHA)
  • 투고 : 2014.07.25
  • 심사 : 2014.10.16
  • 발행 : 2014.10.31

초록

마이크로 크기의 알루미늄 분진의 폭발 특성에 대한 연구는 많이 조사되어 왔지만 나노 크기의 알루미늄 분진에 대한 연구는 매우 적다. 본 연구에서는 나노 및 마이크로 크기의 알루미늄 분진 (70 nm, 100 nm, $6{\mu}m$, $15{\mu}m$)이 분진폭발특성에 미치는 영향을 20 L 폭발시험 장치를 사용하여 실험적으로 조사하였다. 부유 상태의 알루미늄 분진의 입자 크기가 감소하면, 나노 크기에서의 알루미늄 분진의 폭발하한농도(LEC)는 마이크로 크기의 알루미늄분진보다 감소하였다. 나노 크기의 알루미늄 분진에서의 폭발특성은 마이크로 크기의 알루미늄 분진과 명확한 폭발성의 차이를 보이지 않았다. 투과 전자 현미경(TEM )에 의해 나노 크기의 알루미늄 입자의 관찰로부터 입자 간의 응집성의 증가가 나노 알루미늄 분진의 폭발성에 영향을 미칠 수 있을 것으로 추정되었다.

Explosion characteristics of micro-sized aluminum dusts had been studied by many researchers, but the research of nano-sized aluminum dusts were very insufficient. In this study, an experimental investigation was carried out on the influences of nano and micro-sized aluminum dusts (70 nm, 100 nm, $6{\mu}m$, $15{\mu}m$) on dust explosion properties of aluminum particles by using 20 L explosion apparatus. With decreasing of particle size in suspended aluminum dusts, the LEC (lower explosion concentration) of nano-sized aluminum is lower than that of micro-sized aluminum. The particle size change of nano-sized aluminum dusts seems no obvious explosion differences than that of micro-sized aluminum dusts. From the observation of nano-sized aluminum particles by TEM (Transmission Electron Microscopy), it is estimated that increase of particles aggregation may have effects on the explosion characteristics of aluminum nanopowders.

키워드

참고문헌

  1. May, D. C. and Berard, D. L., Fires and explosions associated with aluminum dust from finishing operations. Journal of Hazardous Materials, 17, 81-88, (1987) https://doi.org/10.1016/0304-3894(87)85043-4
  2. Anderson, I. E., & Foley, J. C., Determining the role of surfaces and interfaces in the powder metallurgy processing of aluminum alloy powders, Surface and Interface Analysis, 31, 599-608, (2001) https://doi.org/10.1002/sia.1087
  3. Han, O.S., Fire and explosion characteristics of combustible nanoparticles, Occupational Safety & Health Research Institute, KOSHA, 2013-OSHIR-590, 6-8, (2012)
  4. Baudry, G., Bernard, S., & Gillard, P., Influence of the oxide content on the ignition energies of aluminum powders, Journal of Loss Prevention in the Process Industries, 20(4.6), 330-336, (2007) https://doi.org/10.1016/j.jlp.2007.04.025
  5. Dreizin, E. L., Experimental study of stages in aluminum particle combustion in air. Combustion and Flame, 105, 541-556, (1996) https://doi.org/10.1016/0010-2180(95)00224-3
  6. Eapen, B. Z., Hoffmann, V. K., Schoenitz, M., & Dreizin, E. L., Combustion of aerosolized spherical aluminum powders and flakes in air, Combustion Science and Technology, 176(7), 1055-1069, (2004) https://doi.org/10.1080/00102200490426433
  7. Nifuku, M., Koyanaka, S., Ohya, H., Barre, C., Hatori, M., Fujiwara, S., Ignitability Characteristics of Aluminium and Magnesium Dusts that are generated During the shredding of Post-consumer Wastes, Journal of Loss Prevention in the Process Industries, 20(4-6), 322-329 (2007) https://doi.org/10.1016/j.jlp.2007.04.034
  8. Kwon, Y., Gromov, A. A., Ilyin, A. P., Popenko, E. M. and Rim, G., The mechanism of combustion of superfine aluminum powders, Combustion and Flame, 133, 385-391, (2003) https://doi.org/10.1016/S0010-2180(03)00024-5
  9. Eisenreich, N., Fietzek, H., del Mar Juez-Lorenzo, M., Kolarik, V., Koleczko, A. and Weiser, V., On the mechanism of low temperature oxidation for aluminum particles down to the nano-scale, Propellants, Explosives, Pyrotechnics, 29(3), 137-145, (2004) https://doi.org/10.1002/prep.200400045
  10. Kwok, Q. S. M., Fouchard, R. C., Turcotte, A., Lightfoot, P. D., Bowes, R. and Jones, D. E. G., Characterization of aluminum nanopowder compositions, Propellants, Explosives, Pyrotechnics, 27, 229-240, (2002) https://doi.org/10.1002/1521-4087(200209)27:4<229::AID-PREP229>3.0.CO;2-B
  11. ASTM E1226, "Standard Test Method for Pressure and Rate of Pressure Rise for Combustible Dusts", The American Socirty for Testing and Materials, (1988)
  12. BS EN 14034-3, "Determination of explosion characteristics of dust clouds-Part.3 : Determination of the lower explosion limit LEL of dust clouds", BSI, (2006)