DOI QR코드

DOI QR Code

Influence of the Magnesium Content on the Explosion Properties of Mg-Al Alloy Dusts

Mg-Al합금 분진의 폭발특성에 미치는 마그네슘 성분의 영향

  • Han, Ou-Sup (Occupational Safety & Health Research Institute, KOSHA) ;
  • Lee, Keun-Won (Occupational Safety & Health Research Institute, KOSHA)
  • 한우섭 (한국산업안전보건공단 산업안전보건연구원) ;
  • 이근원 (한국산업안전보건공단 산업안전보건연구원)
  • Received : 2012.10.24
  • Accepted : 2012.12.17
  • Published : 2012.12.31

Abstract

Using the Siwek 20 L spherical explosion vessel, the explosion properties have been examined to understand the influence of magnesium content in Mg-Al alloy dusts with different concentration. For this purpose, the Mg-Al alloy dusts (volume mean diameter : $151{\sim}160{\mu}m$) with magnesium content ratio were used. As the results, the increase of Mg content in Mg-Al alloy causes an decreased minimum explosion concentration and an increased maximum explosion pressure. Also the maximum explosion pressure and maximum rate of pressure rise in Mg-Al alloy dusts mainly depended on the dust concentrations. However, for the explosion index (Kst) of Mg-Al (40:60 wt%), Mg-Al (50:50 wt%) and Mg-Al (60:40 wt%), it was founded to increase the Kst with increasing of magnesium content ratio.

Mg-Al합금 분진의 마그네슘 성분 비율이 분진폭발특성에 미치는 영향을 알기 위하여 Siwek 20 L 구형 분진폭발시험장치를 사용하여 농도를 변화시키면서 실험적으로 조사하였다. 이를 위하여 체적평균입경이 $151{\sim}160{\mu}m$의 Mg-Al합금 분진을 사용하였다. 그 결과 Mg-Al합금에서의 Mg성분의 증가는 폭발하한농도의 감소와 최대폭발압력의 증가로 나타났다. 또한 Mg-Al합금의 최대폭발압력과 최대폭발압력상승속도는 주로 분진 농도에 의존하였다. 그러나 Mg-Al (40:60 wt%), Mg-Al (50:50 wt%) 및 Mg-Al (60:40 wt%)의 폭발지수(Kst)에 있어서, 마그네슘 성분의 증가에 따라서 폭발지수가 증가함을 알 수 있었다.

Keywords

References

  1. Database for Major industrial accidents, Korea Occupational Safety and Health Agency, (1988- 2011)
  2. Han, O.S., Study on Explosibility and Ignitability Properties of High Functional Metal Dust, Occupational Safety & Health Research Institute (KOSHA), 1038, 5-19, (2010)
  3. Eckhoff, R.K., Dust Explosion in the Process Industries ; 3rd ed.", BH, (2003)
  4. Hertzberg, M., Zlochower, I. A., & Cashdollar, K. L., Metal dust combustion: Explosion limits, pressures, and temperatures. In 24th Symposium (International) on Combustion, The Combustion Institute, 1827-1835, (1992)
  5. Going, J. E., Chatrathi, K., & Cashdollar, K. L., Flammability Limit Measurements for Dusts in 20 L and 1 m3 vessels. Journal of Loss Prevention in the Process Industries, 13(3-5), 209-219, (2000) https://doi.org/10.1016/S0950-4230(99)00043-1
  6. Li, G., Yuan, C. M., Zhang, P. H., & Chen, B. Z., Experiment-based Fire and Explosion Risk Analysis for Powdered Magnesium Production Methods. Journal of Loss Prevention in the Process Industries, 21(4), 461-465 (2008) https://doi.org/10.1016/j.jlp.2008.03.003
  7. Li, G., Yuan, C. M., Fu, Y., Zhong, Y. P., & Chen, B. Z., Inerting of Magnesium Dust cloud with Ar, N2 and CO2. Journal of Hazardous Materials, 170(1), 180-183 (2009) https://doi.org/10.1016/j.jhazmat.2009.04.121
  8. Kuai, N. S., Li, J. M., & Chen, Z., Study on the Risk Control of Magnesium Dust Explosion based on Inherent Safety Principle, Fire Science and Technology, 29(5), 369-372, (2010)
  9. Dreizin, E. L., & Hoffmann, V. K., Constant Pressure Combustion of Aerosol of Coarse Magnesium Particles in Microgravity, Combustion and Flame, 118(1-2), 262-280, (1999) https://doi.org/10.1016/S0010-2180(98)00144-8
  10. Dreizin, E. L., Berman, C. H., & Vicenzi, E. P., Condensed-phase Modifications in Magnesium Particle Combustion in Air, Combustion and Flame, 122(1-2), 30-42, (2000) https://doi.org/10.1016/S0010-2180(00)00101-2
  11. Dreizin, E. L., & Hoffmann, V. K., Experiments on Magnesium Aerosol Combustion in Microgravity. Combustion and Flame, 122(1-2), 20-29, (2000) https://doi.org/10.1016/S0010-2180(00)00099-7
  12. Han, O.S., Lee, K.W., Properties of Explosion and Flame Velocity with Content Ratio in Mg-Al Alloy Particles, KIGAS, 16(4), 32-37 (2012)
  13. ASTM E1226, Standard Test Method for Pressure and Rate of Pressure Rise for Combustible Dusts, The American Socirty for Testing and Materials, (1988)
  14. Popov, E.I., Kashporov, L. Ya.,Maltsev, V.M., Breiter, A.L., Combustion mechanism of aluminum- Magnesium alloy particles Combustion, Explosion and Shock Waves, 9(2), 204-208 (1973) https://doi.org/10.1007/BF00814815

Cited by

  1. Effect of Mean Diameter on the Explosion Characteristic of Magnesium Dusts vol.17, pp.4, 2013, https://doi.org/10.7842/kigas.2013.17.4.33