• Title/Summary/Keyword: 폭로시험조건

Search Result 23, Processing Time 0.026 seconds

A Study on Correlation Between Accelerated Corrosion Test and Long-term Exposure Test According to the Temperature Condition (온도조건에 따른 철근부식 촉진시험과 장기폭로시험의 상관성에 관한 연구)

  • Park, Sang-Soon;So, Byung-Tak
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.203-208
    • /
    • 2016
  • In this study, to clarify the differences rebar corrosion beginning, through the actual corrosion accelerated test in corrosion time and laboratory test chamber of the structure of the marine environment results in both environments, it is an object of correlation coefficient derived. The accelerated corrosion test was carried out by two case, I.e., one is $20^{\circ}C$ of low temperaure codition(case 1), and the other is $65^{\circ}C$ of high temperaute codition(case 2). Whether corroions occurs, it was measures using half-cell potential method. The results indicated that case 2 is to acclerate the corrosion of rebar about 1.7~1.8 times as compared with case 1, thenthe corrosion of rebar embadded in concrete occurred according to the order of OPC60, FA, BS, OPC35. Correlation coefficient between acclerated corrosion test and long-term exposure test, case 1 is 2.45 to 2.94, and case 2 is 4.37~4.99.

A Study on the Temporal Correlation of Long-term Exposure Test and Accelerated Corrosion Test of Rebar (장기폭로 시험과 철근 부식 촉진시험의 시간적 상관성에 관한 연구)

  • Lee, Min-Woo;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.307-313
    • /
    • 2014
  • Recent interest in the increased structural performance and durability evaluation of this concrete structure in a salt damage environment is increasing. The most secure and reliable method of accelerated corrosion test is a method to carry out the rebar corrosion monitoring can be exposed directly to the marine test site exposure. However, long-term exposure testinghas the disadvantage that a long period is necessary. So, a lot of research on RC of salt damage environment have beenpromoted as alternatives to replace this. However, accelerated corrosion test, in the short term only is appropriate and is but an accelerated test method to evaluate the critical chlorine concentration, there is a difficult problem that you still get the answer. It is one of the correlation problems accelerated test correspond to a certain period of exposure environment. Therefore, in this study, to clarify the differences rebar corrosion beginning, through the actual corrosion accelerated test in corrosion time and laboratory test chamber of the structure of the marine environment results in both environments, it is an object of correlation coefficient derived.

Reliability evaluation and standardization of outdoor exposure materials (옥외노출소재의 신뢰성 평가기술 및 표준화)

  • Jung, Ho;An, Byung-Man;Lee, Doo-Myeon;Shin, Pil-Soo;Park, Soo-Yeon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.147-155
    • /
    • 2002
  • 본 연구에서는 옥외에서 사용하는 소재의 신뢰성 평가(내후성)에 관한 연구를 수행하였는데 국내와 일본의 옥외환경시험장에 시험편을 동시에 폭로하여 기상인자 및 주변환경에 따른 시험편의 특성 변화를 상호 비교ㆍ평가하였고 인공 촉진내후성 시험을 실시하여 옥외내후성과의 상관관계를 관찰하였으며 그 결과는 다음과 같다. 국내 지역의 옥외환경시험장 중에서는 인천 옥외환경시험장에 폭로한 시험편에서 가장 많은 변화를 나타내고 있으며, 일본 지역은 가혹한 기상환경을 나타내는 미야고지마 옥외환경시험장에 폭로한 시험편에서 많은 변화가 나타남을 관찰할 수 있었는데 국내 지역보다는 온도와 습도 등 기상제조건이 더 가혹한 일본 지역의 옥외환경시험장에 폭로한 시험편의 노화가 더 빠르게 진행됨을 관찰하였다.

  • PDF

Evaluation of Bond Strength in FRP Hybrid Bar Affected by Freezing/thawing Test and UV Rays (동결융해 및 UV 폭로시험을 거친 FRP Hybrid Bar의 인발거동특성 평가)

  • Park, Jae-Sung;Yoon, Yong-Sik;Park, Ki-Tae;Kwon, Sung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.53-58
    • /
    • 2017
  • FRP Hybrid Bar, composed of an embedded steel and the coated composites with epoxy and glass fiber, is an effective construction material with tension-hardening performance and lightweight. The epoxy exposed to UV(Ultra Violet Rays) and FT(Freezing and Thawing) action easily shows a surface deterioration, which can cause degradation of bonding strength between inside-steel and outside-concrete. In the present work, surface inspection for 3 different samples of normal steel, FRP Hybrid Bar before UV, and FRP Hybrid Bar after UV test was performed, then concrete samples with 3 reinforcement types were prepared for accelerated FT test. Through visual inspection on 3 typed reinforcement, no significant deterioration like chalking was evaluated. The results from FT test to 120 and 180 cycles showed FRP Hybrid Bar exposed to UV test has higher bonding strength than normal steel by 106.3% due to enlarged bond area by silica coating. The 3 cases showed a similar bond strength tendency with increasing FT cycles, however a relatively big deviations of bond strength were evaluated in FRP Hybrid Bar after UV test due to loss of silica coating.

A Study on Correlation Between Cyclic Drying-Wetting Accelerated Corrosion Test and Long-term Exposure Test (건습반복 부식촉진시험 및 장기폭로시험의 상관성에 대한 연구)

  • Park, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.136-143
    • /
    • 2016
  • There are various method for evaluating the durability life of concrete structures due to salt damage. The best way is to perform a corrosion test for a rebar embedded in concrete specimen was exposure to marine environment. However, this method has the disadvantage that it takes a long period of time. Also, accelerated corrosion test which was complemented complements the time-consuming weakness is limited to apply because it could not reveal a correlation between long-term exposure test. Accordingly, the purpose of this study is to derive a correlation coefficient between cycle drying-wetting accelerated corrosion test and long-term exposure test. Corrosion initiation time was measured in four types of concrete samples, i.e., two samples mixed with fly ash(FA) and blast furnace slag(BS), and the other two samples having two water/cement ratio(W/C = 0.6, 0.35) without admixture(OPC 60 and OPC 35). The accelerated corrosion test was carried out by two case, i.e., one is a cyclic drying-wetting method(case 1), and the other is a artificial seawater ponding test method(case 2). Whether corrosion occurs, it was measures using half-cell potential method. The results indicated that case 1 is to accelerated the corrosion of rebar about 24~36% as compared with case 2, then the corrosion of rebar embedded in concrete occurred according to the order of OPC60, FA, BS, OPC35. Correlation coefficient between accelerated corrosion test and long-term exposure test, case 1 is 4.23 to 5.42, and case 2 is 6.54 to 7.82.

The Comparison of Apparent Chloride Diffusion Coefficients in GGBFS Concrete Considering Sea Water Exposure Conditions (해양 폭로 환경에 따른 GGBFS 콘크리트의 겉보기 염화물 확산계수 비교)

  • Yoon, Yong-Sik;Jeong, Gi-Chan;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.18-27
    • /
    • 2022
  • In this study, the time-dependent chloride ingress behavior in GGBFS concrete was evaluated considering marine exposure conditions and the properties of concrete mixtures. The concrete mixture for this study had 3 levels of water to binder ratio and the substitution rate of GGBFS, and outdoor exposure tests were performed considering submerged area, tidal area, and splash area. According to the evaluation results of diffusion coefficient considering properties of concrete mixtures, as the substitution rate of GGBFS increased, the decreasing rate of the diffusion coefficient decreased based on exposure periods of 730 days(2 years). As the evaluation result of the diffusion behavior according to the marine exposure conditions, the diffusion coefficient was evaluated in the order of submerged area, tidal area, and splash area. In tidal area, a relatively high diffusion coefficient was evaluated due to the repetition of wet and dry seawater. In this study, the effects of GGBFS substitution rate on the decreasing behavior of apparent chloride diffusion coefficient was analyzed in consideration of exposure conditions and periods. Linear regression analysis was performed with apparent chloride diffusion coefficient as output value and GGBFS substitution rate as input value. After 730 days of exposure, the effect of GGBFS on diffusion coefficient was significantly reduced. Even for OPC concrete, after 730 days, the diffusion coefficient was as low as that of GGBFS concrete, so the gradient of the regression equation decreased significantly. It is thought that improved durability performance for chloride ingress can be secured before 730 days through the use of GGBFS.

Effect of Short-Term Weathering on Flame Retardant Performance of Korean Red Pine Wood Coated with Dancheong (단기간 풍화가 단청도채된 소나무재의 방염성능에 미치는 영향)

  • Son, Dong Won;Hong, Jong Ouk;Park, Jin Ho;Lee, Hwa Soo;Chung, Yong Jae;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.785-808
    • /
    • 2016
  • The objective of this study was to investigate the effect of the short-term weathering on the flame retardant performance of wood coated with Dancheong. Flame retardants were applied on the Dancheong coated Korean red pine. Flame retardants applied panels were layed at the two conditions of outdoor exposure and artificial aging to assess the reliability of artificial aging. Flame retardants used were commercial products developed for historical wooden buildings. Scanning electron micrographs revealed the forming of carbonized membrane by melting of flame retardant on wood surface. These carbonized membranes may help delay the further combustion of wood. Flame retardant performance was assessed by measuring heat release rate (HRR) and total heat release (THR) by cone calorimetry. There was no difference in flame retardant performance between before and after 6-month outdoor exposure tests. And also no difference in flame retardant performance between before and after 2-week artificial aging which corresponds to 6-month outdoor exposure. Both tests showed the similar results of combustion characteristics.

Optical Microscopic Image Analysis for Damaged GFRP Rebar by Alkali and High Temperature Exposures (알칼리와 고온노출에 의한 GFRP 보강근 손상에 대한 현미경분석 연구)

  • Bae, Jung-Myung;Moon, Do-Young;Park, Cheol-Woo;Park, Young-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.53-59
    • /
    • 2017
  • In this experimental study, the characteristic of damages on GFRP rebar exposed to high temperature only and immerged in alkaline solution after the exposure to high temperature was analyzed through microscopic image analysis. The found microcrack and pores in resin matrix were quantitatively compared if there was effect of pre-exposure to high temperature. The damages, such as microcrack and pores in resin matrix, by alkali exposure were mainly found in rebar surface. On the other hand, the pores caused by high temperatures were extensively found in a section and had greater width than those caused by the alkali exposure. In results of the quantitative comparison, the accumulated length and widths of microcrack and pores in resin matrix in pre-exposed GFRP rebar to high temperature were respectively 1.5 and 1.4 times of those in the GFRP rebar only immerged in alkali solution. Therefore, the deterioration of resin matrix by the alkali exposure could be accelerated due to the pre-exposure to high temperature.

Self-Healing Properties of Fiber-Reinforced Cement Composite (FRCC) Depending on Various Curing Conditions (양생조건에 따른 섬유보강 시멘트계 복합재료(FRCC)의 균열 자기치유 특성)

  • Choi, Heesup;Choi, Hyeonggil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.289-296
    • /
    • 2016
  • In this study, the self-healing effect of a fiber-reinforced cement composite (FRCC) was examined using a drying-wetting test and an outdoor exposure test. The influence of various curing conditions on the self-healing effect of the FRCC was also investigated. The effect of self-healing was evaluated using a permeability coefficient and by investigating the cracks using a optical microscope. The results confirmed that the FRCC was capable of self-healing under a long wetting time and a low drying temperature. In addition, watertight performance by self-healing was shown to have a significant influence on wetting time. Meanwhile, this self-healing effect was enhanced by hydration as a result of rainfall when the FRCC was put under actual environmental conditions. Moreover, it was determined that cracking self-healing can be improved by using the appropriate admixture materials.

Chloride Ion Penetration Resistance of Slag-replaced Concrete and Cementless Slag Concrete by Marine Environmental Exposure (해양환경 폭로에 의한 슬래그 치환 콘크리트 및 슬래그 콘크리트의 염화물 이온 침투 저항성)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Kim, Gyeong-Tae;Shin, Kyoung-Su;Nam, Jeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.299-306
    • /
    • 2017
  • In this research, it was examined chloride ion penetration resistance of slag-replaced concrete and cementless slag concrete considering marine environmental exposure conditions of splash zone, tidal zone and immersion zone. In the design strength of grade 24 MPa, the specimens were tested to determine their compressive strength, scanning electron microscopy images and chloride migration coefficient. Further, chloride ion penetration depth and carbonation depth of specimens exposed to marine environment were measured. Experimental results confirm that chloride migration coefficient of specimens tended to decrease with increasing the replacement ratio of ground granulated blast-furnace slag in accelerated laboratory test. In addition, the specimens exposed to the tidal zone were found to be the greatest chloride ion penetration depth compared to splash zone and immersion zone. On the other hand, the chloride ion penetration depth of the specimens exposed to splash zone tended to increase with increasing the replacement ratio of ground granulated blast-furnace slag in contrast with the results for the tidal zone and immersion zone.