• Title/Summary/Keyword: 포틀랜드

Search Result 413, Processing Time 0.028 seconds

Evaluation of High-Viscosity Grouting Injection Perfomance for Reinforcement of Rock Joint in Deep -Depth Tunnels (대심도 터널 암반 절리 보강을 위한 고점도 그라우팅 주입 성능 평가)

  • Inkook Yoon;Junho Moon;Younguk Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.15-19
    • /
    • 2024
  • This study aimed to develop high-efficiency grouting techniques under deep-depth conditions by experimentally verifying the applicability of various injection materials. Particle size analysis and injection model experiments were conducted with Ordinary Portland Cement (OPC) and Micro Cement (MC) to evaluate the injection performance of each material. Using Barton's Cubic Network theory, the rock fracture spacing was calculated for domestic deep-depth standards, specifically below 40 meters underground. The analysis of particle size passability under selected conditions showed that MC could pass through the rock fracture gaps, while OPC could not. According to the results of the injection model experiments using experimental devices and area calculation software, OPC failed in injection due to its larger particle size, whereas MC was capable of injection even under high-viscosity conditions. Based on these findings, the study quantitatively and visually derived the applicability of grouting materials under deep-depth conditions, and high-viscosity MC material is expected to be effective for waterproofing enhancement in deep-depth rock fracture surfaces.

Study on the Physical Properties of Ordinary Portland Cement and Slag Cement with the Addition of Cement Bypass Dust (시멘트 바이패스 분진 첨가에 따른 보통 포틀랜드 시멘트와 슬래그 시멘트의 물리특성 연구)

  • Jae Jun Choi;Sun Mok Lee;Ju Chan Jang;Yang Seok Oh;Yun Yong Kim
    • Resources Recycling
    • /
    • v.33 no.4
    • /
    • pp.15-21
    • /
    • 2024
  • This study examines the possibility of using cement bypass dust (CBPD), a by-product of the cement industry, as a raw material for hardening agents. To this end, the effect of adding CBPD to ordinary Portland cement (OPC) and slag cement on the physical properties, such as fluidity and compressive strength, was investigated. As the amount of CBPD added increased to 25%, 50%, and 75%, both the fluidity and compressive strength decreased. However, the decrease was smaller in slag cement than in OPC. When 25% CBPD was added, the 7-day compressive strength was 28.15 MPa, which is approximately 70% higher than that of the commercially available hardening agents (16.5 MPa). This confirms the potential of CBPD as a raw material for hardening agents.

An Experimental Study on the Strength Estimation of Belite Cement Mortar by Microwave Heating (마이크로파를 이용한 저열 포틀랜드(4종)시멘트 모르터의 조기강도 추정에 관한 실험적 연구)

  • 김민석;정근호;이영도;정재영;정상진
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.2
    • /
    • pp.179-184
    • /
    • 2001
  • The most recent building trend is going large, high rise, high strength as overlarge project is developing in domestic construction business. Belite cement has properties like low heat, excellent long term strength, and durability without admixture(fly ash, silica fume). so, Beilte cement is suitable for mass structure which is needed high strength, high fluidity and low heat property. This study is to examine the possibility if site adoption microwave-use early strength estimation method. Based on the existed study related the portland cement, the interrelation between Belite cement and microwave-use early strength estimation method is required. In this study, interrelation between mortar and Evaluating strength estimation method is investigated before the concrete experiment.

  • PDF

Utillization of Mineral Admixtures for the Reduction of Slump Loss in Fresh Concrete (굳지 않은 콘크리트의 슬럼프손실 저감을 위한 혼화재의 활용)

  • 문한영;문대중
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.2
    • /
    • pp.155-165
    • /
    • 1998
  • 굳지 않은 콘크리트의 슬럼프손실을 저감시키기 위한 목적으로 고로슬래그 미분말 및 플라이애쉬의 혼합비율과 혼화제의 첨가방법을 변화시킨 콘크리트의 믹싱후 경과시간에 따른 슬럼프 변화에 대하여 고찰하였다. 연구결과 보통포틀랜드시멘트에 고로슬래그 비분말 또는 플라이애쉬를 혼합한 콘크리트가 혼화재를 혼합하지 않은 콘크리트보다 슬럼프손실을 줄일 수 있었으며, 고로슬래그 미분말과 플라이애쉬를 각각 50 및 5%를 혼합한 3성분계 콘크리트의 경우 슬럼프손실을 저감시키는데 유효하였다. 또한 혼화제의 일부를 15분후 분할하여 후첨가하는 혼합방법이 굳지않은 콘크리트의 슬럼프손실을 저감시키는데 가장 큰 효과가 있다. 한편 혼화재를 혼합한 3성분계 보통강도용 및 고강도용 콘크리트의 재령 28일까지의 압축강도는 혼화재를 혼합하지 않은 콘크리트보다 작았으나 재령 91일 압축강도는 31% 및 15%정도 크게 증가하였다.

Comparative Study on a Special Low-Porosity Portland Cement (저 기공성 특수 포틀랜드 시멘트에 대한 비교연구)

  • 장복기
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.532-540
    • /
    • 1988
  • Even the finest cement as having a specific surface area of 6.000~8.500$\textrm{cm}^2$/g (Blaine) is to convert into low-porosity hardened cement paste by the use of appropriate plasticizer. In this study, tests were carried out on such a special cement mix(fineness of 6.000$\textrm{cm}^2$/g, Ca-lignosulfonate plus k2CO3 as plasticizer and W/C=0.25) in comparison with ordinary Portland cement. Owing mainly to the high fineness of the cement powder and the low water-to-cement ratio, the hardened low-porosity cement paste showed a very tight microstructure, the pore texture of which consisted of micropores and wide pores only of small radii. The consequence of such mix was hence that the low-porosity special cement had excellent properties of early-high and very high strengths as compared to ordinary Portland cement. Its volume change when dried in the air or re-wetted, exhibited superor behaviour as well.

  • PDF

Effect of the Treated Amounts with Asphalt and Carbon Black on the Early Hydration and the Physical Properties of Portland Cement (Asphalt와 Carbon Black처리양이 포틀랜드 시멘트의 물리적 특성 및 초기수화에 미치는 영향)

  • 홍원표;조헌영;황의환
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.609-616
    • /
    • 1989
  • For the development of high durable portland cement, it was tested that the some physical properties of ordinary portland cements (OPC) treated with 0.3-1.5wt.% asphalt and 0.5-1.0wt.% carbon black. From the results, the contact angles of water against cements treated with more than 0.6wt.% asphalt were increased over 80 degrees, the initial and the final setting times of cement paste were delayed about 20min. according to the every 0.3wt.% increase of asphalt. The first and the second pick heights of the hydration curve of the cement were considerabely decreased and the induction period of that was increased. And so, the cumulative hydration heat of the cement which was treated with 0.6wt.% asphalt and 0.5wt.% carbon black was lower about 10cal/g than that of ordinary portland cement during 42 hydration times.

  • PDF

Properties of Low Heat Portland(Belite Rich) Cement Concrete (저열 포틀랜드(벨라이트)시멘트 콘크리트의 특성)

  • 하재담;김기수;김동석;구본창;조계홍;이동윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.66-71
    • /
    • 1998
  • Recently, it has been increased to construct massive concrete structures, like under-ground structure, offshore structure etc., ie. concrete construction have become larger and higher and are demanding lower heat concrete to prevent thermal cracking. It has been progressed to replace cements with fly-ash and slag to lower heat of hydration, but it is hard to control quality of the mineral admixtures in stage of adjusting of real construction. Application of low heat portland(Belite Rich) cement for the mass concrete is the best solution to satisfied those requirements. Here are explained the basic properties of fresh concrete as well as hardened concrete of using low heat portland cement(LHPC). Also, we compare the results of adiabatic temperature rise test using LHPC and OPC.

  • PDF

Experimental Estimation of the Early Strength of Belite Cement Mortar Using Microwave (저열 포틀랜드(4종)시멘트 모르터의 마이크로파를 이용한 조기강도 추정에 관한 실험적 연구)

  • 김민석;박재한;정근호;이종균;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1077-1082
    • /
    • 2001
  • The most recent building trend is going large, high rise, high strength as overlarge project is developing in domestic construction business. Belite cement has properties like low heat, excellent long term strength, and durability without admixture(fly ash, silica fume). so, Belite cement is suitable for mass structure which is needed high strength, high fluidity and low heat property. This study is to examine the possibility of site adoption microwave-use early strength estimation method. Based on the existed study related the portland cement, the interrelation between Belite cement and microwave-use early strength estimation method is required. In this study, interrelation between mortar and Evaluating strength estimation method is investigated before the concrete experiment.

  • PDF

Thermal Crack Control of SRC Pier Using Low-Heat Portland Cement (저열 포틀랜드 시멘트 적용을 통한 SRC 교각 온도균열 제어)

  • 김태홍;하재담;유재상;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.297-302
    • /
    • 2001
  • SRC pier at KTE 6-1 construction area is a very important structure. Precise control of quality is needed. This pier has 3.50m$\times$3.73m section and 38.20m length. So this structure must be treated as mass concrete and thermal crack caused by hydration heat should be controled. In this project belite cement concrete is used to control the thermal crack. As a result of adapting belite cement concrete perfect control is achieved. Finally, hydration heat FEM analysis of horizontal element is executed for Ordinary Portland Cement concrete and belite cement concrete. In comparison of two results, it is confirmed that using low heat portland cement concrete is necessary.

  • PDF

The Effect on the Properties of High Flowing Concrete Using Low Heat Portland Cement by Material and Mixing Variations (저열 포틀랜드 시멘트를 사용한 고유동콘크리트의 사용재료 및 배합 변동에 따른 특성 평가)

  • 하재담;김태홍;유재상;이종열;권영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.303-308
    • /
    • 2001
  • Recently, concrete structures have become larger and higher and are demanding high performance concrete with lower heat to prevent thermal cracking, far greater workability, high strength and durability, Application of low heat portland(Type IV) cement for the high performance concrete is the best solution to satisfied those requirements. Here are explained the effect on the properties of high flowing concrete using low heat portland cement by material and mixing variations. Variables for sensitivity test were selected items like finess modulus of aggregates, particle size of limestone powder, unit water, superplasticizer, viscosity agent and concrete temperature. The results of this study were be applied to slurry wall of #215 and #216 of underground LNG tank in Inchon.

  • PDF