• Title/Summary/Keyword: 포트홀 압출 공정

Search Result 15, Processing Time 0.021 seconds

Finite Element Simulation of a Porthole Die Extrusion Process for Manufacturing Aluminum Heat Radiation Pipe (알루미늄 방열 파이프의 생산 목적의 포트홀 금형 압출공정의 유한요소해석)

  • Lee, M.C.;Cho, J.H.;Park, J.H.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.458-461
    • /
    • 2008
  • We carry out non-steady state finite element simulation of a porthole extrusion process for manufacturing a radiation pipe under isothermal assumption. It is assumed that welding takes place at the moment that the material contacts the plane of symmetry. Welding phenomena are revealed by observing the contacting mechanism of the material passed through the portholes. It is emphasized that mesh density control and intelligent remeshing during welding process govern the solution accuracy and the program applicability. AFDEX 3D is employed.

  • PDF

Finite Element Analysis of the Extrusion Process for an Automobile Bumper (자동차용 범퍼 압출 공정의 유한요소해석)

  • Kim, Kwang-Heui;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • The development of an aluminum bumper is required in order to reduce the weight of the automobile. An porthole die extrusion process is simulated by the finite element method in order to develop the aluminum bumper which is manufactured by hollow section extrusion. The general-purpose finite element analysis software is used. The developed analysis method can be applied to the optimization of the porthole die extrusion process for the aluminum bumper.

  • PDF

The Effect of Porthole Shape on Elastic Deformation of Die and Process at Condenser Tube Extrusion (포트홀 형상이 컨덴서 튜브 직접 압출 공정 및 금형 탄성 변형에 미치는 영향)

  • Lee, J.M.;Kim, B.M.;Jo, H.;Jo, H.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.315-318
    • /
    • 2003
  • Recently, condenser tube which is used for a cooling system of automobiles is mainly manufactured by the conform extrusion but this method is inferior as compared with direct extrusion in productivity per the unit time and in the equipment investment. Therefore, it is essential for the conversion of direct extrusion with porthole die. The direct extrusion with porthole die can produce condenser tube which has the competitive power in costs and qualities compared with the existing conform extrusion. This study is designed to evaluate metal flow, welding pressure, extrusion load tendency of mandrel deflection that is affected by variation of porthole shape in porthole die. Estimation is carried out using finite element method under the non-steady state. Also this study was examined into the cause of mandrel fracture through investigating elastic deformation of mandrel during the extrusion.

  • PDF

FE Simulation of Extrusion Process for Al Multi Cell Tube According to the Changes of the Porthole Shape (포트홀 형상 변화를 고려한 Al 멀티셀 튜브 압출공정 해석)

  • Lee Jung Min;Kim Dong Hwan;Ho Jo Hyung;Kim Byung Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1146-1152
    • /
    • 2005
  • Recently, multi cell tube which is used for a cooling system of automobiles is mainly manufactured by the conform extrusion but this method is inferior as compared with direct extrusion in productivity per the unit time and in the equipment investment. Therefore, it is essential for the conversion of direct extrusion with porthole die. The direct extrusion with porthole die can produce multi cell tube which has the competitive power in costs and qualities compared with the existing conform extrusion. This study is designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection that is affected by variation of porthole shape in porthole die. Estimation is carried out using finite element method under the non-steady state. Also this study was examined into the cause of mandrel fracture through investigating elastic deformation of mandrel during the extrusion.

Development of Direct Extrusion Process on Al 1050 Condenser Tube by using Porthole Die (포트홀 다이를 이용한 Al1050 컨덴서 튜브의 직접압출공정 기술 개발)

  • 이정민;김병민;강충길;조형호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.53-61
    • /
    • 2004
  • Condenser tube which is used for a cooling system of automobiles is mainly manufactured by conform extrusion. However, direct extrusion using porthole die in comparison with conform extrusion has many advantages such as improvement of productivity, reduction of production cost etc. In general, the porthole die extrusion process is useful for manufacturing long tubes with hollow sections and consists of three stages(dividing, welding and forming stages). Especially, Porthole die for producing condenser tube is very complex. Thus, in order to obtain the detailed mechanics, to assist in the design of proper die shapes and sizes, and to improve the quality of products, porthole die extrusion should be analyzed in as non-steady state as possible. This paper describes FE analysis of non-steady state porthole die extrusion for producing condenser tube with multi-hole through 3D simulation in the non-steady state during the entire process to evaluate detailed metal flow, temperature distribution, welding pressure and extrusion load. Also to validate FE simulation of porthole die extrusion, a comparison of simulation and experiment results was presented in this paper.

Die stress and Process of Analysis for Condenser Tube Extrusion by using a Porthole Die (포트홀 다이를 이용한 컨덴서 튜브 직접압출 공정해석 및 금형강도 해석)

  • Lee, J. M.;lee, S. K.;Kim, B. M.;Jo, H. H.;Jo, H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1030-1033
    • /
    • 2002
  • In this study, it is important that we have an understanding of the metal flow for manufacturing condenser tube in porthole die extrusion, because this need to provide for household appliances market that is expected to grow into the major market of the cooling system hereafter. Condenser tube is mainly manufactured by conform exclusion. However, this method was not satisfied a series of the needs for manufacturing condenser tube as compared with porthole die extrusion. The deforming skill recently is required high-productivity, high-accuracy and reducing lead-time, thus it is essential to substitute conform exclusion by porthole die exclusion. Porthole die extrusion has many advantages such as improvement of productivity, reduction of production cost etc. In general, the porthole die extrusion process consists of three stages(dividing, welding and forming stages). In order to obtain the detailed mechanics, to assist in the design of proper die shapes and sizes, and to improve the quality of products, porthole die extrusion should be analyzed in as non-steady state as possible during the entire process to evaluate detailed metal flow, temperature distribution, welding pressure and extrusion lead, and therm stress analysis was practiced to obtain effective stress and elastic deformation value. A analytical results provide useful information the optimal design of the porthole die for condenser tube.

  • PDF

Design and Analysis of Hollow Section Extrusion using Mismatching Refinement with Domain Decomposition (영역분할에 의한 불일치 격자세분화 기법을 이용한 중공형 압출공정의 설계 및 해석)

  • Park, Geun;Yang, Dong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.1016-1023
    • /
    • 2000
  • The present work is concerned with three-dimensional finite element analysis of the hollow section extrusion process using a porthole die. The effects of related design parameters are discussed through the finite element simulation for extrusion of a triply-connected rectangular tubular section. For economic computation, mismatching refinement, an efficient domain decomposition method with different mesh density for each subdomain, is implemented. In order to obtain the uniform flow at the outlet, design parameters such as the hole size and the hole position are investigated and compared through the numerical analysis. Comparing the velocity distribution with that of the original design, it is concluded that the design modification enables more uniform flow characteristics. The analysis results are then successfully reflected on the industrial porthole die design.