• Title/Summary/Keyword: 포텐셜 함수

Search Result 183, Processing Time 0.023 seconds

Analysis of Channel Doping Profile Dependent Threshold Voltage Characteristics for Double Gate MOSFET (이중게이트 MOSFET의 채널도핑분포의 형태에 따른 문턱전압특성분석)

  • Jung, Hak-Kee;Han, Ji-Hyung;Lee, Jae-Hyung;Jeong, Dong-Soo;Lee, Jong-In;Kwon, Oh-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.664-667
    • /
    • 2011
  • In this paper, threshold voltage characteristics have been analyzed as one of short channel effects occurred in double gate(DG)MOSFET to be next-generation devices. The Gaussian function to be nearly experimental distribution has been used as carrier distribution to solve Poisson's equation, and threshold voltage has been investigated according to projected range and standard projected deviation, variables of Gaussian function. The analytical potential distribution model has been derived from Poisson's equation, and threshold voltage has been obtained from this model. Since threshold voltage has been defined as gate voltage when surface potential is twice of Fermi potential, threshold voltage has been derived from analytical model of surface potential. Those results of this potential model are compared with those of numerical simulation to verify this model. As a result, since potential model presented in this paper is good agreement with numerical model, the threshold voltage characteristics have been considered according to the doping profile of DGMOSFET.

  • PDF

Complex-Channel Blind Equalization using Euclidean Distance Algorithms with a Self-generated Symbol Set and Kernel Size Modification (자가 발생 심볼열과 커널 사이즈 조절을 통한 유클리드 거리 알고리듬의 복소 채널 블라인드 등화)

  • Kim, Nam-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1A
    • /
    • pp.35-40
    • /
    • 2011
  • The complex-valued blind algorithm based on a set of randomly generated symbols and Euclidean distance can take advantage of information theoretic learning and cope with the channel phase rotation problems. On the algorithm, in this paper, the effect of kernel size has been studied and a kernel-modified version of the algorithm that rearranges the forces between the information potentials by kernel-modification has been proposed. In simulation results for 16 QAM and complex-channel models, the proposed algorithm show significantly enhanced performance of symbol-point concentration and no phase rotation problems caused by the complex channel models.

Spatial Free Vibration and Stability Analysis of Thin-Walled Curved Beams with Variable Curvatures (곡률이 변하는 박벽 곡선보의 3차원 자유진동 및 좌굴해석)

  • 서광진;민병철;김문영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.321-328
    • /
    • 2000
  • An improved formulation of thin-wailed curved beams with variable curvatures based on displacement field considering the second order terms of finite semitangential rotations is presented. From linearized virtual work principle by Vlasov's assumptions, the total potential energy is derived and all displacement parameters and the warping functions are defined at cendtroid axis. In developing the thin-walled curved beam element having eight degrees of freedom per a node, the cubic Hermitian polynomials are used as shape functions. In order to verify the accuracy and practical usefulness of this study, free vibrations and buckling analyses of parabolic and elliptic arche shapes with mono-symmetric sections are carried out and compared with the results analyzed by ABAQUS' shell element.

  • PDF

A Study on the Synthesis of Dielectric Constant Potential for Arbitrary Inverse Scattering Pattern Using an Iterative Sampling Method (반복 샘플링법을 사용한 임의 역산란 패턴을 위한 유전율 포텐셜 합성에 관한 연구)

  • 남준석;박의준
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.10
    • /
    • pp.150-158
    • /
    • 2003
  • In the beam pattern synthesis problem using line source, the relationship between source distribution function and beam pattern may be represented by Fourier transform pair. In this paper, a general method to synthesize the line source distribution for a desired lobe-like beam pattern is presented by developing the nonlinear inversion method based on an iterative sampling technique. This method can be applied to the synthesis of continuously distributed dielectric constants satisfying the desired inverse scattering coefficient patterns when illuminating by TE-polarized and TM-polarized plane waves to arbitrary dielectric material. Furthermore this method can also be applied to the synthesis of transmission line with arbitrary reflection coefficient patterns. Some bandstop spatial filter and dispersive transmission line filter are illustrated for generality.

The Analysis of Arbitrarily Shaped Microstrip Patch Antennas using the MPIE (MPIE를 이용한 임의의 형상을 갖는 마이크로스트립 패치 안테나의 해석)

  • 정대호;김태원;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.8
    • /
    • pp.1059-1068
    • /
    • 1993
  • We will put the emphasis on the analysis of arbitrarily shaped microstrip antennas. The most general and rigorous treatment of microstrip antennas is given by the electric field integral equation(EFIE), usally formulated in the spectral domain. In this paper, we use a modification of EFIE, called the mixed potential integral equation(MPIE) , and we solve it in the space domain. This technique uses Green's functions associated with the scalar and vector potential which are calculated by using stratified media theory and are expressed as Sommerfeld integrals. The integral equation is solved by a moment's method using rooftop subsectional basis function. Thus, microstrip patches of any shape can be analysed at any frequency and for any substrate. Numerical results for a rectangular patch and for a L-shaped patch are given and compared with measured values.

  • PDF

A Boundary Method for Shape Design Sensitivity Analysis in Shape Optimization Problems and its Application (경계법을 이용한 형상최적화 문제의 설계민감도 해석 및 응용)

  • Kwak Hyun-Gu;Choi Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.255-263
    • /
    • 2005
  • This paper proposes an efficient boundary-based technique for the shape design sensitivity analysis in various disciplines. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in the problems. The formula can be conveniently used for gradient computation in a variety of shape design problems. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite. Perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The potential flow problems and fillet problem are chosen to illustrate the efficiency of the proposed methodology.

Effects of Three-Body Interactions on the Stability of Small Carbon Clusters (3체 인력이 탄소 cluster들의 안정도에 미치는 효과)

  • Lee, Jong-Mu
    • Korean Journal of Materials Research
    • /
    • v.1 no.2
    • /
    • pp.86-92
    • /
    • 1991
  • A potential energy function comprising a two-body potential term which is modified form Morse potential and a three-body potential term which is modified from Axilrod-Teller potential has been developed for small carbon clusters. The structural changes of small carbon clusters $C_2-C_6$ are qualitatively investigated by employing this potential energy function representing the energies of the small carbon cluster isotopes as a function of the three body intensity factor. It is found that the structure of the small carbon cluster changes from open structure to closed one, from complicated structure to simple one, and from three-dimensional structure to two-or-one dimensional one as the degree of the three-body interaction increases.

  • PDF

Analysis of Rectangular Ring Microstrip Antenna (사각 링 마이크로스트립 안테나 해석)

  • 서동국;박병우
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.60-67
    • /
    • 2004
  • In this paper, a rectangular ring microstrip patch antenna has been analyzed by using desegmentation method and evaluation impedance matrices from Green's functions fur rectangular segment and desegmentation method for analysis of planar electro-magnetic structures is discussed. As the rectangular ring cavity could be seen as a structure subtracted a small rectangular cavity from a large one, the overall impedance matrix was obtained by applying a multiport connection method to the individual impedance matrices expressed as a term of Green's function fer rectangular segment. The electromagnetic fields can be solved from a vector potential which is satisfied it's eight boundary conditions. The electric field distribution at each edges was expressed as a histogram table with exciting modes. These results can be used to analyze the operational modes for a rectangular ring microstrip antennas.

Gate Voltage Dependent Tunneling Current for Nano Structure Double Gate MOSFET (게이트전압에 따른 나노구조 이중게이트 MOSFET의 터널링전류 변화)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.955-960
    • /
    • 2007
  • In this paper, the deviation of tunneling current for gate voltage has been investigated in double gate MOSFET developed to decrease the short channel effects. In device scaled to nano units, the tunneling current is very important current factor and rapidly increases,compared with thermionic emission current according to device size scaled down. We consider the change of tunneling current according to gate voltage in this study. The potential distribution is derived to observe the change of tunneling current according to gate voltage, and the deviation of off-current is derived from the relation of potential distribution and tunneling probability. The derived current is compared with the termionic emission current, and the relation of effective gate voltage to decrease tunneling current is obtained.

Simulation of Small Carbon Clusters(I) -Geometries and Energies of $C_2$-C$_5$ - (탄소 클러스터들에 관한 시뮬레이션(I) -C$_2$-C$_5$ 의 구조와 에너지-)

  • Lee, Chong-Mu
    • Korean Journal of Materials Research
    • /
    • v.1 no.3
    • /
    • pp.139-144
    • /
    • 1991
  • The geometries and energies of $C_2-C_5$ clusters have been calculated using simple semiempirical potential energy functions. The results of the calculations show that the most stable structure of the $C_2-C_5$ clusters is linear and that not only the rhombic $C_4$ but also the Y-shaped $C_4$ hale similar energy to the linear $C_4$.

  • PDF