• Title/Summary/Keyword: 포텐셜유동

Search Result 126, Processing Time 0.034 seconds

Numerical Study on Rayleigh-Taylor Instability Using a Multiphase Moving Particle Simulation Method (다상유동형 입자법을 이용한 Rayleigh-Taylor 불안정성의 수치해석)

  • Kim, Kyung Sung;Koo, Bonguk;Kim, Moo-Hyun;Park, Jong-Chun;Choi, Han-Suk;Cho, Yong-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Complexity of multiphase flows due to existence of more than two interface including free-surface in one system, cannot be simulated easily. Since more than two fluids affect to flows and disturb interface, non-linearities such as instabilities can be appeared. Among several instabilities on multiphase flows, one of representative is Rayleigh-taylor instability. In order to examine in importance of density disparity, several cases with numerous Atwood number are set. Moreover, investigation of influence on initial disturbance were also considered. Moving particle simulation (MPS) method, which was employed in this paper, was not widely used for multiphase problem. In this study, by adding new particle interaction models such as self-buoyance correction, surface tension, and boundary condition at interface models, MPS were developed having more strength of physics and robust. By applying newly developed multiphase MPS, considered cases are performed and compared each other. Additionally, though existence of disagreement of magnitude of rising velocity between theoretical values from linear potential theory and that of numerical simulation, agreement of tendency can be proved of similarity of result. the discordance of magnitude can be explained due to non-linear effects on numerical simulation which was not considered in theoretical result.

A STUDY ON THE GRID GENERATION FOR TWO-DIMENSIONAL FLOW USING A POTENTIAL SOLVER (포텐셜 해석자를 이용한 2차원 유동의 격자 생성 연구)

  • Lee, J.;Jung, K.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • One of the obstacles on the grid generation for complex geometries with multi-block structured grids is the domain decomposition. In this paper, the domain decomposition for two-dimensional flow is studied using the flow characteristics. The potential flow equation with the source distribution on the panel surface is solved to extract the information of the flow. The current approach is applied to a two-dimensional cylinder and Bi-NACA0012 problems. The generated grids are applied to generic flow solvers and reasonable results are obtained. It can be concluded that the current methods is useful in the domain decomposition for the multi-block structured grid.

Potential Flow Analysis around Ship with Goose-neck Type Bulbous Bow Penetrating Free Surface (자유수면을 관통하는 거위목 벌브를 가진 선박 주위의 포텐셜 유동해석)

  • Choi, Hee-Jong;Park, Il-Heum;Kim, Jong-Kyu;Kim, Ok-Sam;Chun, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.18-22
    • /
    • 2011
  • The Ranking source panel method was used to predict the flow phenomenon of a ship with a goose-neck type bulbous bow penetrating the free surface. The non-linearity of the free surface boundary condition was fully satisfied using an iterative calculation method, and the raised panel method was adopted to obtain a more stable solution at each iteration step. The panel cutting method was applied to generate a hull calculation grid at each iteration step, including the first step. At that time, the nose of the goose-neck type bulbous bow was divided by the free surface and the free surface panel was modified at each iteration step using the variable free surface panel method. Numerical calculations were performed to investigate the validity and efficiency of the applied numerical algorithm using the 3600 TEU container carrier. The computed wave resistance coefficients were compared with the experimentally achieved residual resistance coefficients.

Calculation of Nonlinear Interactions between Hydrofoil and Free-Surface by the High-Order Spectral/Boundary-Integral Method (고차 스펙트럴 / 경계적분법에 의한 수중익과 자유표면의 비선형 상호작용 계산)

  • 김용직;하영록
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.1
    • /
    • pp.27-32
    • /
    • 2003
  • Under the assumption of potential flow, free-surface flow around a hydrofoil is calculated by the high-order spectra1!boundary-integral method, This method is one of the most efficient numerical methods by which the nonlinear interactions between hydrofoil and free-surface can be simulated in time-domain. In this method. the wave potential which represents the nonlinear evolution of free-surface is solved by the high-order spectral method and the body potential which provides the effects of hydrofoil and shed vortex is solved by the boundary-integral method. The calculated free-surface profiles which are generated by a uniformly translating hydrofoil are compared with other experimental results. And they show relatively good agreements each other. As another example, free-surface flow generated by a heaving and translating hydrofoil is calculated and discussed.

Numerical analysis for Bifurcation phenomenon in a Two dimensional wall-driven cavity flow (2차원 벽구동 캐비티유동 분기현상의 수치해석)

  • Cho Ji Ryong;Hong Sang Pyo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.115-122
    • /
    • 2000
  • 본 연구에서는 2 차원 벽구동 캐비티 유동에 의하여 나타나는 이력효과에 의한 분기(Bifurcation)현상을 전산유체기법을 사용하여 연구하였다. 캐비티는 북쪽과 동쪽벽이 움직일 수 있고, 다른 두 벽은 고정되어있는 구조이다. 실험은 Reynolds 수 100 에서 1000까지 증가시켜가면서 북쪽벽과 동쪽벽을 동시에 가속 시켜 정상상태에 이르게 한 경우와 북쪽벽이 먼저 가속되어 정상해에 이른 후 동쪽벽을 나중에 가속하여 재차 정상상태에 이르게 한 경우를 비교하였다. 그 결과 Reynolds수가 약 200이상부터 벽에 작용하는 항력, 유량함수의 값, 재부착점등이 분기현상을 나타냄을 확인하였다.

  • PDF

Effects of Turbulence Diffusion and Secondary Flows on the Particle Concentration Distribution in Single Stage ESP (1단 전기집진기에서 난류확산과 2차유동이 입자의 농도분포에 미치는 영향)

  • 정상현;김상수;김용진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2271-2282
    • /
    • 1995
  • Numerical simulations for the effects of secondary flow and turbulence diffusion on the particle concentration distributions have been carried out for the single stage electrostatic precipitator. The electrohydrodynamic secondary flow, particle concentration distribution and collection efficiency have been evaluated as a function of dimensionless parameters such as Re, $N_{end}$, $P_{e}$ x. The results of simulations show that for increasing secondary flow intensity the concentration distribution is drastically deformed and collection efficiency is decreased which is more than due to turbulent diffusion.n.n.

Numerical Analysis of Cavitating Flow around Two-dimensional Wedge-shaped Submerged Bodies under the Wall Effect (벽면효과를 받는 2차원 쐐기형 몰수체의 공동 유동에 대한 수치해석)

  • Kim, Ji-Hye;Ahn, Byoung-Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.321-328
    • /
    • 2017
  • In practice, cavitation phenomena occur in unbounded flows. However, the wall effect is unavoidable during experiments at a closed section such as a cavitation tunnel. Especially, supercavity generated behind a cavitator is relatively large and thick, so that geometric and dynamic characteristics of the cavity are affected by the tunnel wall. In order to apply experimental results into the unbounded flow field, physical correlations are necessary. In this paper, we proposed an image method based on a potential flow to simulate the wall effect. Considering two-dimensional wedge-shaped bodies, configurations and drag characteristics of the cavity were examined according to the distance ratio to the wall surface. The results were compared and verified with existing theoretical and experimental results.

The Motion Response of an Oil Boom with Flexible Skirt (유연한 스커트를 가진 오일붐의 운동응답해석)

  • 성홍근;조일형;최항순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.156-162
    • /
    • 1995
  • A numerical method for a 2-D oil boom model considering the flexibility of skirt has been developed The neater is assumed rigid and the skirt is tensioned membrane having a point mass at its end The fluid motion is potential. The kinematic condition which demands the continuity of the displacement is imposed at the joint between the floater and the skirt. The dynamic condition for the point mass is imposed at the bottom end of the skirt. The numerical method is based on the Green's function method in the frame of linear potential theory. It finds it's solution simultaneously from the total system of three equations, integral equation, the equation of motion of the floater and the equilibrium equation of the deformation of the skirt. Integral equation is derived by applying the Green's theorem to radiation potential and Green's function. Proper descretization of those three equations leads to the system of a linear algebraic equation. Due to the flexibility of skirt the motion of floater can be diminished in some range of wave frequency and furthermore the mechanism of resonance of the oil boom can be changed. The motion responses of various oil booms have been compared varying the length of the skirt and the point mass. The numerical method has been validated indirectly from the good correspondence between the motion responses of the flexible skirt model and the rigid skirt model in low frequency limit.

  • PDF

A Study on the Configuration of Two-Dimensional Waterjet Inlet (이차원 물분사 추진장치 입구면 형상에 관한 연구)

  • J.M. Lew;S.K. Hong;Y.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.9-21
    • /
    • 1999
  • The waterjet is very widely used today in propulsion system of high speed vessel but manufacturer is limited because of an efficiency and a difficulty of a manufacture on the inlet configuration of the waterjet. The importancy in designing the inlet configuration of the waterjet lies on the minimization of the cavitation which is largely affecting the efficiency. In this paper, the configuration analysis is carried out to find a optimum shape which is minimizing the cavitation using a two dimensional potential-based panel method with an inlet configuration of a flush type. Also, it is developed a direct design method finding an inlet configuration by a given pressure distributions. The numerically obtained optimum shape using this configuration analysis method show a good agreement compared to the Kashiwadani's results. It is carried out a direct design method over a lip and a ramp of an inlet configuration wish pressure distributions obtained a result of the configuration analysis and the results show a good agreement compared to original configuration.

  • PDF

An Experimental Study on the Behavior of Injection Gas (분사가스의 확산거동에 관한 실험적 연구 성방정식의 형성(II))

  • 박경석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1215-1222
    • /
    • 1989
  • 본 논문의 목적은 공기 유동장내에 가스분류의 거동을 조사하고 실용 가스 기관의 설계시에 필요한 기초적 데이타를 제공하고자 하는데 있다.본 연구와 관련 된 후래의 연구를 보면 자문등은 열선농도프로브를 사용하여 정상분류중의 농도측정을 행하였고, 분류내의 내부구조를 상세히 조사하였다. 특히, 종래에는 일정하게 보였 던 분류코아 부의 농도변동값의 경향을 구체적으로 나타내었다.