• Title/Summary/Keyword: 포장용 콘크리트

Search Result 138, Processing Time 0.025 seconds

A Study on the Bond Stress of Rebar in Reinforced Concrete Pavement using Recycled Aggregate (재생골재 활용 철근콘크리트포장 내 철근의 부착특성에 대한 연구)

  • Kim, Nak-Seok;Kim, Kwang-Tae;Jeon, Chan-Ki;Jeon, Joong-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.1 s.16
    • /
    • pp.77-84
    • /
    • 2005
  • Amount of demolished concretes is highly produced as dismantlement of structures to increased owing to usage alteration and deteriorated of concrete structures, but most of them have been used as material for simple reclamation. Therefore, if demolished concrete could be recycled as aggregate for concrete. it will contribute to solve the exhaustion of nature aggregate, in terms of saving resources and protecting environment, especially being want of resources in Korea. In this study it was investigated into experimental results that were carried out demolished concrete recycled aggregate gained from dismantled real structures and source concrete recycled aggregate produced according to respectively 5 steps of replacement ratio for recycling as pavement concrete aggregate.

An Experimental Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete Pavement (하이브리드 섬유로 보강된 콘크리트 포장의 역학적 특성 실험연구)

  • Park, Jong-Sup;Choi, Sung-Yong;Jung, Woo-Tai;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • Cement concrete pavement offers long-term service life and excellent applicability for heavy traffic. It is easier to purchase and more durable and economical than the asphalt pavement. However, it is difficult to repair and rehabilitate compared to the asphalt pavement when it comes to the maintenance problem. Since the crack is the main reason of the damage of concrete pavement, it is necessary to control the early and long-term crack in the concrete pavement. In this experimental study, the basic performance tests have been carried out to investigate the effect of hybrid fibers which were composed of micro fibers with small diameter and high aspect ratio and macro fibers with large diameter and low aspect ratio on the concrete pavement, in which lower water ratio and larger aggregates were used compared to the general concrete mixture. The test results showed that the flexural strength and toughness of concrete pavement mixture have been increased with the use of hybrid fibers in the concrete pavement mixture, even though they were less effective compared to the normal concrete mixture. It was found that the hybrid fibers were effective to control the early shrinkage of the concrete pavement which is one of the main reasons of the damage in the concrete pavement.

Assesment of Applicability of Recycled Aggregates for Highway Pavement Materials (도로포장 재료로서 폐콘크리트 재생골재의 활용성 연구)

  • Kim, Kwang-Woo;Ryu, Neung-Hwan;Doh, Young-Soo;Li, Xiang-Fan
    • International Journal of Highway Engineering
    • /
    • v.3 no.2 s.8
    • /
    • pp.103-112
    • /
    • 2001
  • This study was performed to evaluate applicability of recycled aggregates as subbase and surface concrete materials for cement concrete pavement. Laboratory compaction test, CBR test and plate load bearing test were conducted to evaluate applicability for pavement subbase materials. Recycled concrete for surface course was manufactured with a design strength of $280kgf/cm^2$. Normal coarse aggregate was substituted with recycled aggregates with five different ratios, 0%, 20%, 40%, 60% and 80% for recycled concrete mixes. Fresh concrete Properties, concrete strength properties for the five substitution percentages of recycled aggregates after 28-day curing and freezing-and-thawing resistance were evaluated experimentally. Based on the experimental results, it was concluded that the recycled aggregate was the material good enough to use for subbase material, and 40% or lower substitution ratio was an appropriate percentage of recycled aggregates replacement for surface concrete.

  • PDF

P.P밴드 Fiber 콘크리트 강도 특성

  • 김수건;손기상
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.11a
    • /
    • pp.335-340
    • /
    • 2002
  • P.P밴드는 우리 일상생활에서 값싸고 흔히 쓰인다. 이사 때 또는 물품을 상자로 구입시, 운반시 띠를 공구를 써 매어두는 포장용으로 많이 쓰인다. 문제는 이들 밴드들이 다시 풀기 위해서 절단한 뒤 쓰레기통에, 또는 기타 폐기처리 되는 경우가 너무도 많아서 재활용 차원의 연구가 필요하다는 것이다. 콘크리트 재료의 인장력이 부족한 측면을 보완하고 압축강도가 감소되지 않는다면 어느 정도 그 의미를 찾을 수 있을 것으로 판단된다. P.P밴드(Propylerene) 자체의 인장강도는 190kg을 갖고 있어 포장용으로는 더 없는 소요내력을 값싸게 제공하고 있다.(참고.1)(중략)

  • PDF

Durability of Cement Concrete Pavement using Regulated Set Cement (초속경시멘트를 사용한 시멘트콘크리트포장의 내구특성)

  • Lee, Seung-Tae;Kim, Seong-Soo;Park, Kwang-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.285-286
    • /
    • 2009
  • In this study, chloride ions permeability test of regulated set cement concrete using ground granulated blast-furnace slag was carried out. The purpose of the present study is to develop pavement materials with high performance with respect to resisance to chloride penetration.

  • PDF

Fundamental Properties of Fiber Reinforced Lean Concrete for Pavements Depending on Various Types of Fiber (섬유종류 변화에 따른 도로 포장용 린 콘크리트의 기초적 특성)

  • Jeon, Kyu-Nam;Baek, Dae-Hyun;Jung, Woo-Tai;Park, Jong-Sup;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.265-266
    • /
    • 2010
  • In this study, reduction of the crack in the lean concrete for pavements by combining different types of fibers is discussed to compare and verify its validities. Experimental result using NY fibers is depending on excellent aspect ratio and hydrophilic. Vebe time has shown good results. In addition, the addition of PP fiber had most favorable flexural strength.

  • PDF

A Study on the Quality Properties of Porous concrete for Pavement Using Silica Fume and Steel Fiber (실리카퓸 및 강섬유를 이용한 포장용 포러스콘크리트의 품질특성에 관한 연구)

  • Park, Seung-Bum;Lee, Jun;Seo, Dae-Seuk;Yoon, Eui-Sik
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.31-42
    • /
    • 2005
  • This study evaluates the physical mechanical properties, durability and sound absorbtion of porous concrete for pavement according to content of silica fume and steel fiber to elicit the presentation of data and the way to enhance its function for the practical field application of porous concrete as a material of pavement. The results of the test indicate that in every condition, the void ratio and the coefficient of water permeability of porous concrete for pavement satisfy both the domestic standards and proposition values. Among the properties of strength, the compressive strength satisfies the standards in the specification of Korea National Housing Corporation as for every factor of mixture but in the case of the flexural strength, more than 0.6vol.% of steel fiber satisfied the Japan Concrete Institute proposition values. The mixture of silica fume and steel fiber presents the excellent intensity, though. The case when silica fume and steel fiber are used simultaneously presents the strongest durability because the durability shows the similar tendency to the dynamic characteristics. The case when 10wt.% of silica fume and 0.6vol.% of steel fiber are used at the same time shows that the loss rate of mass by Cantabro test became 27% better and freeze-thaw resistance became 60% better. As for the characteristics of sound absorption of porous concrete for pavement, Noise Reduction Coefficient is 0.48 to prove that it possesses almost 50% sound absorption.

  • PDF

A Study on the Mechanical Properties of Steel Fiber Reinforced Porous Concrete for Pavement Using Slag Aggregate and Fly Ash (슬래그골재와 플라이애시를 이용한 강섬유 보강 포장용 투수콘크리트의 역학적 특성에 관한 실험적 연구)

  • Park, Seung-Bum;Lee, Jun;Jang, Young-Il;Lee, Byung-Jae
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.93-104
    • /
    • 2007
  • This study evaluates the mechanical properties of steel fiber reinforced porous concrete for pavement according to content of slag aggregate and fly ash to elicit the presentation of data and the way to enhance its function for the practical field application of porous concrete as a material of pavement. As a result, void ratio and permeability coefficient of porous concrete for pavement increased a little as mixing rate of slag aggregates increased. Void ratio and permeability coefficient increased a lot as mixing rate of fly ash decreased. As fly ash was mixed, national regulation of permeable concrete for pavement(8% and 0.1 cm/sec) was met. Compressive strength and flexural strength decreased as mixing rate of slag aggregates increased, but they increased a lot as mixing rate of fly ash increased. Even when slag aggregates were mixed 50% with 5% fly ash mixed, national regulation of pavement concrete(18MPa and 4.5MPa) was met. In addition, compared to non-mixture, flexural strength increased about 22.8% when 0.75vol.% of steel fiber was added. Regarding sliding resistance, BPN increased as mixing rate of slag aggregates increased. But BPN decreased as fly ash was mixed. Compared to crushed stone aggregates, abrasion resistance and fleers-thaw resistance decreased as mixing rate of slag aggregates increased. When fly ash was mixed, abrasion resistance and freeze-thaw resistance improved remarkably. Compared to non-mixture, 10% mixture of fly ash improved abrasion resistance and freeze-thaw resistance about 5.6% and 14.3 respectively.

  • PDF