• 제목/요약/키워드: 포인트클라우드 데이터

Search Result 151, Processing Time 0.022 seconds

Accuracy Analysis for Slope Movement Characterization by comparing the Data from Real-time Measurement Device and 3D Model Value with Drone based Photogrammetry (도로비탈면 상시계측 실측치와 드론 사진측량에 의한 3D 모델값의 정확도 비교분석)

  • CHO, Han-Kwang;CHANG, Ki-Tae;HONG, Seong-Jin;HONG, Goo-Pyo;KIM, Sang-Hwan;KWON, Se-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.234-252
    • /
    • 2020
  • This paper is to verify the effectiveness of 'Hybrid Disaster Management Strategy' that integrates 'RTM(Real-time Monitoring) based On-line' and 'UAV based Off-line' system. For landslide prone area where sensors were installed, the conventional way of risk management so far has entirely relied on RTM data collected from the field through the instrumentation devices. But it's not enough due to the limitation of'Pin-point sensor'which tend to provide with only the localized information where sensors have stayed fixed. It lacks, therefore, the whole picture to be grasped. In this paper, utilizing 'Digital Photogrammetry Software Pix4D', the possibility of inference for the deformation of ungauged area has been reviewed. For this purpose, actual measurement data from RTM were compared with the estimated value from 3D point cloud outcome by UAV, and the consequent results has shown very accurate in terms of RMSE.

Utilization of Drone LiDAR for Field Investigation of Facility Collapse Accident (붕괴사고 현장조사를 위한 드론 LiDAR 활용)

  • Yonghan Jung ;Eontaek Lim ;Jaewook Suk;Seul Koo;Seongsam Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.849-858
    • /
    • 2023
  • Investigating disaster sites such as earthquakes and landslides involves significant risks due to potential secondary disasters like facility collapse. In situations where direct access is challenging, there is a need to develop methods for safely acquiring high-precision 3D disaster information using light detection and ranging (LiDAR) equipped drone survey systems. In this study, the feasibility of using drone LiDAR in disaster scenarios was examined, focusing on the collapse accident at Jeongja Bridge in Bundang-gu, Seongnam City, in April 2023. High-density point clouds for the accident bridge were collected, and the bridge's 3D terrain information was reconstructed and compared to the measurement performance of 10 ground control points. The results showed horizontal and vertical root mean square error values of 0.032 m and 0.055 m, respectively. Additionally, when compared to a point cloud generated using ground LiDAR for the same target area, a vertical difference of approximately 0.08 m was observed, but overall shapes showed minimal discrepancies. Moreover, in terms of overall data acquisition and processing time, drone LiDAR was found to be more efficient than ground LiDAR. Therefore, the use of drone LiDAR in disaster sites with significant risks allows for safe and rapid onsite investigations.

A Study on Position Correction Sign for Autonomous Driving Vehicles (자율주행 자동차를 위한 측위 보정 표지 연구)

  • Young-Jae JEON;Chul-Woo PARK;Sang-Yeon WON;Jun-Hyuk LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.161-172
    • /
    • 2023
  • Autonomous driving vehicles recognize the surroundings through various sensors mounted on the vehicle and control the vehicle based on the collected information. The level of autonomous driving technology is improving due to the development of sensor technology and algorithms that process collected data, but the implementation of perfect autonomous driving technology has not been achieved. To overcome these limitations, through autonomous cooperative driving centered on infrastructure. In this study, developed a position correction sign that provides a reference for positioning of autonomous vehicles. First of all, an analysis was performed on the current status of positioning technology for autonomous driving. And measure the number of point clouds for the 1st sample consisting of two square reflective surfaces and 2nd sample that increased the vertical length of each reflective surface. Experimental results show that both primary and secondary products are installed at least 15 m apart It could be recognized as a sensor, and it was confirmed that the secondary production that increased the length of the top and bottom had a higher number of point clouds than the primary production and better expressed the shape of the facility.

Dimensional Quality Assessment for Assembly Part of Prefabricated Steel Structures Using a Stereo Vision Sensor (스테레오 비전 센서 기반 프리팹 강구조물 조립부 형상 품질 평가)

  • Jonghyeok Kim;Haemin Jeon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.173-178
    • /
    • 2024
  • This study presents a technique for assessing the dimensional quality of assembly parts in Prefabricated Steel Structures (PSS) using a stereo vision sensor. The stereo vision system captures images and point cloud data of the assembly area, followed by applying image processing algorithms such as fuzzy-based edge detection and Hough transform-based circular bolt hole detection to identify bolt hole locations. The 3D center positions of each bolt hole are determined by correlating 3D real-world position information from depth images with the extracted bolt hole positions. Principal Component Analysis (PCA) is then employed to calculate coordinate axes for precise measurement of distances between bolt holes, even when the sensor and structure orientations differ. Bolt holes are sorted based on their 2D positions, and the distances between sorted bolt holes are calculated to assess the assembly part's dimensional quality. Comparison with actual drawing data confirms measurement accuracy with an absolute error of 1mm and a relative error within 4% based on median criteria.

System Architecture for Effective Point Cloud-based Reverse Engineering of Architectural MEP Pipe Object (효과적인 포인트 클라우드 기반 건축 MEP 파이프 객체 역설계 처리를 위한 시스템 아키텍처)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5870-5876
    • /
    • 2014
  • The aim of this study was to suggest the System Architecture for Effective Architectural MEP Pipe Reverse Design(PRD) based on the Point Cloud and derive the consideration. To do this, the requirement and use-cases related to the MEP pipe reverse design work were defined and the architecture for the reverse design automation was proposed. To identify a consideration for finding the architecture issues, a prototype was developed using the architecture and evaluated.

LiDAR Sensor based Object Classification System for Delivery Robot Applications (배달 로봇 응용을 위한 LiDAR 센서 기반 객체 분류 시스템)

  • Woo-Jin Park;Jeong-Gyu Lee;Chae-woon Park;Yunho Jung
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.375-381
    • /
    • 2024
  • In this paper, we propose a lightweight object classification system using a LiDAR sensor for delivery service robots. The 3D point cloud data is encoded into a 2D pseudo image using a Pillar Feature Network (PFN), and then passed through a lightweight classification network designed based on Depthwise Separable Convolutional Neural Networks (DS-CNN). The implementation results show that the designed classification network has 9.08K parameters and 3.49M Multiply-Accumulate (MAC) operations, while supporting a classification accuracy of 94.94%.

Analysis of Crop Damage Caused by Natural Disasters in UAS Monitoring for Smart Farm (스마트 팜을 위한 UAS 모니터링의 자연재해 작물 피해 분석)

  • Kang, Joon Oh;Lee, Yong Chang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.583-589
    • /
    • 2020
  • Recently, the utility of UAS (Unmanned Aerial System) for a smart farm using various sensors and ICT (Information & Communications Technology) is expected. In particular, it has proven its effectiveness as an outdoor crop monitoring method through various indices and is being studied in various fields. This study analyzes damage to crops caused by natural disasters and measures the damage area of rice plants. To this end, data is acquired using BG-NIR (Blue Green_Near Infrared Red) and RGB sensors, and image analysis and NDWI (Normalized Difference Water Index) index performed to review crop damage caused by in the rainy season. Also, point cloud data based on image analysis is generated, and damage is measured by comparing data before and after the typhoon through an inspection map. As a result of the study, the growth and rainy season damage of rice was examined through NDWI index analysis, and the damage area caused by typhoon was measured by analysis of the inspection map.

UAV-based Construction Site Monitoring and Analysis System Development for Civil Engineering Management (토목현장에서의 무인비행장치 기반 현장정보 취득 및 분석 시스템 개발)

  • Kim, Changyoon;Youn, Junhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.549-557
    • /
    • 2022
  • Due to harsh conditions of construction site, understanding of current feature of terrain and other infrastructures is critical issue for site managers. However, because of difficulties in acquiring the geographical information of the construction sites such as large sites and limited capability of construction workers, comprehensive site investigation of current feature of construction site is not an easy task for construction managers. To address these circumstances of construction sites, this study deduce difficulties and applicabilities of unmanned aerial vehicle in the area of construction site management. To confirm applicability of UAV in civil construction project, case study have been conducted on the road construction project. The result of case study proved that the developed system is one of promising technologies that has been studied in construction site management. To improve applicability of UAV for construction and process management information, law and technical issues will be an important area of future study.

Utilization of Unmanned Aerial Scanner for Investigation and Management of Forest Area (산림지역 조사 및 관리를 위한 무인항공 스캐너의 활용)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.189-194
    • /
    • 2019
  • Forest investigation is the basic data for forest preservation and forest resource development, and periodical data acquisition and management have been performed. However, most of the current forest investigations in Korea are surveys to grasp the current status of forests, and various applications have not been made as geospatial information. In this study, the unmanned aerial scanner was used to acquire and process data in the forest area and to present an efficient forest survey method through analysis of the results. Unmanned aerial scanners can extract ground below vegetation, effectively creating DEM for forest management. It can be used as geospatial information for forest investigation and management by generating accurate topographical data that is impossible in conventional photogrammetry. It can also be used to measure distances between power lines and vegetation or manage transmission lines in forest areas. The accurate vertical distance measurement for vegetation surveys can greatly improve the accuracy of labor measurement and work efficiency compared to conventional methods. In the future, the use of unmanned aerial scanners will improve the data acquisition efficiency in forest areas, and will contribute to improved accuracy and economic feasibility compared to conventional methods.

Development of Software-Defined Perimeter-based Access Control System for Security of Cloud and IoT System (Cloud 및 IoT 시스템의 보안을 위한 소프트웨어 정의 경계기반의 접근제어시스템 개발)

  • Park, Seung-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.15-26
    • /
    • 2021
  • Recently, as the introduction of cloud, mobile, and IoT has become active, there is a growing need for technology development that can supplement the limitations of traditional security solutions based on fixed perimeters such as firewalls and Network Access Control (NAC). In response to this, SDP (Software Defined Perimeter) has recently emerged as a new base technology. Unlike existing security technologies, SDP can sets security boundaries (install Gateway S/W) regardless of the location of the protected resources (servers, IoT gateways, etc.) and neutralize most of the network-based hacking attacks that are becoming increasingly sofiscated. In particular, SDP is regarded as a security technology suitable for the cloud and IoT fields. In this study, a new access control system was proposed by combining SDP and hash tree-based large-scale data high-speed signature technology. Through the process authentication function using large-scale data high-speed signature technology, it prevents the threat of unknown malware intruding into the endpoint in advance, and implements a kernel-level security technology that makes it impossible for user-level attacks during the backup and recovery of major data. As a result, endpoint security, which is a weak part of SDP, has been strengthened. The proposed system was developed as a prototype, and the performance test was completed through a test of an authorized testing agency (TTA V&V Test). The SDP-based access control solution is a technology with high potential that can be used in smart car security.