• Title/Summary/Keyword: 포아송 count data

Search Result 33, Processing Time 0.018 seconds

Bayesian Multiple Change-Point Estimation for Single Quantum Dot Luminescence Intensity Data (단일 양자점으로부터 발생한 발광세기 변화에 대한 베이지안 다중 변화점 추정)

  • Kima, Jaehee;Kimb, Hahkjoon
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.4
    • /
    • pp.569-579
    • /
    • 2013
  • In the field of single-molecule spectroscopy, it is essential to analyze luminescence Intensity changes that result from a single molecule. With the CdSe/ZnS core-shell structured quantum dot photon emission data Bayesian multiple change-point estimation is done with the gamma prior for Poisson parameters and truncated Poisson distribution for the number of change-points.

Estimating the Economic Value of Recreation Sea Fishing in the Yellow Sea: An Application of Count Data Model (가산자료모형을 이용한 서해 태안군 유어객의 편익추정)

  • Choi, Jong Du
    • Environmental and Resource Economics Review
    • /
    • v.23 no.2
    • /
    • pp.331-347
    • /
    • 2014
  • The purpose of this study is to estimate the economic value of the recreational sea fishing in the Yellow Sea using count data model. For estimating consumer surplus, we used several count data model of travel cost recreation demand such as a poisson model(PM), a negative binomial model(NBM), a truncated poisson model(TPM), and a truncated negative binomial model(TNBM). Model results show that there is no exist the over-dispersion problem and a NBM was statistically more suitable than the other models. All parameters estimated are statistically significant and theoretically valid. The NBM was applied to estimate the travel demand and consumer surplus. The consumer surplus pre trip was estimated to be 254,453won, total consumer surplus per person and per year 1,536,896won.

A Bayesian zero-inflated Poisson regression model with random effects with application to smoking behavior (랜덤효과를 포함한 영과잉 포아송 회귀모형에 대한 베이지안 추론: 흡연 자료에의 적용)

  • Kim, Yeon Kyoung;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.287-301
    • /
    • 2018
  • It is common to encounter count data with excess zeros in various research fields such as the social sciences, natural sciences, medical science or engineering. Such count data have been explained mainly by zero-inflated Poisson model and extended models. Zero-inflated count data are also often correlated or clustered, in which random effects should be taken into account in the model. Frequentist approaches have been commonly used to fit such data. However, a Bayesian approach has advantages of prior information, avoidance of asymptotic approximations and practical estimation of the functions of parameters. We consider a Bayesian zero-inflated Poisson regression model with random effects for correlated zero-inflated count data. We conducted simulation studies to check the performance of the proposed model. We also applied the proposed model to smoking behavior data from the Regional Health Survey (2015) of the Korea Centers for disease control and prevention.

Bayesian Analysis of a Zero-inflated Poisson Regression Model: An Application to Korean Oral Hygienic Data (영과잉 포아송 회귀모형에 대한 베이지안 추론: 구강위생 자료에의 적용)

  • Lim, Ah-Kyoung;Oh, Man-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.505-519
    • /
    • 2006
  • We consider zero-inflated count data, which is discrete count data but has too many zeroes compared to the Poisson distribution. Zero-inflated data can be found in various areas. Despite its increasing importance in practice, appropriate statistical inference on zero-inflated data is limited. Classical inference based on a large number theory does not fit unless the sample size is very large. And regular Poisson model shows lack of St due to many zeroes. To handle the difficulties, a mixture of distributions are considered for the zero-inflated data. Specifically, a mixture of a point mass at zero and a Poisson distribution is employed for the data. In addition, when there exist meaningful covariates selected to the response variable, loglinear link is used between the mean of the response and the covariates in the Poisson distribution part. We propose a Bayesian inference for the zero-inflated Poisson regression model by using a Markov Chain Monte Carlo method. We applied the proposed method to a Korean oral hygienic data and compared the inference results with other models. We found that the proposed method is superior in that it gives small parameter estimation error and more accurate predictions.

An application to Zero-Inflated Poisson Regression Model

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.45-53
    • /
    • 2003
  • The Zero-Inflated Poisson regression is a model for count data with exess zeros. When the reponse variables have excess zeros, it is not easy to apply the Poisson regression model. In this paper, we study and simulate the zero-inflated Poisson regression model. An real example was applied to this model. Regression parameters are estimated by using MLE's. We also compare the fitness of zero-inflated Poisson model with the Poisson regression and decision tree model.

  • PDF

Zero-Inflated INGARCH Using Conditional Poisson and Negative Binomial: Data Application (조건부 포아송 및 음이항 분포를 이용한 영-과잉 INGARCH 자료 분석)

  • Yoon, J.E.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.583-592
    • /
    • 2015
  • Zero-inflation has recently attracted much attention in integer-valued time series. This article deals with conditional variance (volatility) modeling for the zero-inflated count time series. We incorporate zero-inflation property into integer-valued GARCH (INGARCH) via conditional Poisson and negative binomial marginals. The Cholera frequency time series is analyzed as a data application. Estimation is carried out using EM-algorithm as suggested by Zhu (2012).

Hurdle Model for Longitudinal Zero-Inflated Count Data Analysis (영과잉 경시적 가산자료 분석을 위한 허들모형)

  • Jin, Iktae;Lee, Keunbaik
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.923-932
    • /
    • 2014
  • The Hurdle model can to analyze zero-inflated count data. This model is a mixed model of the logit model for a binary component and a truncated Poisson model of a truncated count component. We propose a new hurdle model with a general heterogeneous random effects covariance matrix to analyze longitudinal zero-inflated count data using modified Cholesky decomposition. This decomposition factors the random effects covariance matrix into generalized autoregressive parameters and innovation variance. The parameters are modeled using (generalized) linear models and estimated with a Bayesian method. We use these methods to carefully analyze a real dataset.

An application to Multivariate Zero-Inflated Poisson Regression Model

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.177-186
    • /
    • 2003
  • The Zero-Inflated Poisson regression is a model for count data with exess zeros. When the correlated response variables are intrested, we have to extend the univariate zero-inflated regression model to multivariate model. In this paper, we study and simulate the multivariate zero-inflated regression model. A real example was applied to this model. Regression parameters are estimated by using MLE's. We also compare the fitness of multivariate zero-inflated Poisson regression model with the decision tree model.

  • PDF

Analysis of Failutr Count Data Based on NHPP Models (NHPP모형에 기초한 고장 수 자료의 분석)

  • Kim, Seong-Hui;Jeong, Hyang-Suk;Kim, Yeong-Sun;Park, Jung-Yang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.2
    • /
    • pp.395-400
    • /
    • 1997
  • An important quality characteristic of a software reliability.Software reliablilty growh models prvied the tools to evluate and moniter the reliabolty growth behavior of the sofwate during the testing phase Therefore failure data collected during the testing phase should be continmuosly analyzed on the basis of some selected software reliability growth models.For the cases where nonhomogeneous Poisson proxess models are the candiate models,we suggest Poisson regression model, which expresses the relationship between the expeted and actual failures counts in disjonint time intervals,for analyzing the failure count data.The weighted lest squares method is then used to-estimate the paramethers in the parameters in the model:The resulting estimators are equivalent to the maximum likelihood estimators. The method is illustrated by analyzing the failutr count data gathered from a large- scale switchong system.

  • PDF

The factors of insurance solicitor's turnovers of life insurance using Poisson regression (포아송회귀 모형을 활용한 생명보험 설계사들의 이직 요인 분석)

  • Chun, Heuiju
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1337-1347
    • /
    • 2016
  • This study investigates factors affecting the number of insurance solicitor's turnovers of life insurance companies based on questionnaire about them. Since the response variable which is the number of insurance solicitor's turnovers is count data, it is analyzed by Poisson regression which is one of generalized regression. When work year in current company, which is direct influential factor on the number of insurance solicitor's turnovers, is controlled, affiliated corporation has been found to be the most influential factor. In addition, age, motivation to work as financial planner, monthly income, a number of average new contract per month, and final education have been identified to be important factors. If insurance solicitor's occupant organization is large company, the number of turnovers becomes small, but if the organization is general agent(GA), it becomes larger. When insurance solicitor's age is high, the number of insurance solicitor's turnovers are reduced. If the motivation to become a financial planner is due to acquaintance such as family and relatives, the number of turnovers becomes small.