본 연구에서는 쉘의 테두리를 보가 둘러싸고 있는 전통적인 형태와 모서리보를 제거한 형태의 모임지붕형 쌍곡포물선쉘구조의 유한요소해석결과비교를 통해 모서리보의 역할을 확인하고, 또한 지붕의 경사도의 영향을 분석하였다. 유한요소해석에 의하면 쉘면에 작용하는 하중은 쉘 대각선 방향의 아치작용을 통해 모퉁이의 지점에 직접 전달되므로 막이론에 비해 테두리보에는 부재력이 작게 작용하고 모퉁이의 지점 부분의 쉘에는 응력이 증가되는 것으로 나타났다. 모서리보를 제거하면 지점 부근의 쉘에 더욱 응력이 집중되고 경사진 모서리 부분의 처짐이 증가하는데 이와 같은 현상은 지붕의 경사도가 낮아짐에 따라 현저해지는 것으로 나타났다. 따라서, 모임지붕형 쌍곡포물선쉘 구조에서는 지점 부분의 쉘두께를 보다 증가할 필요가 있으며 경사도가 낮은 쌍곡포물선쉘 구조의 모서리보 제거는 주의가 필요한 것으로 나타났다.
낮은 아치는 동하중 재하시 재료는 탄성범위 내에 있더라도 큰 변형이 발생할 수 있으며, 좌굴 가능성이 높기 때문에 선형해석으로는 정확한 거동을 구명하기 어렵다. 본 연구에서는 이에 따라 낮은 아치의 동적 비선형 해석방법 및 좌굴판단기준을 제시하였으며, 제시된 방법을 토대로 낮은 아치의 동적 비선형 해석을 수행하고 임계좌굴하중을 구하였다. 형상의 비선형성은 Lagrangian 운동좌표를 고려하여 해석하였으며 동적운동방정식을 풀기 위하여 유한요소법을 사용하였다. 이 때, 동적 운동방정식의 시간적분으로 Newmark 해법을 채택하였다. 프로그램은 만재 방사형 등분포하중을 받는 낮은 원호 아치를 해석하여 그 결과치를 다른 연구결과와 비교하여 검증하였다. 모형해석을 통해서는 큰 동하중을 받는 원호 아치는 기하학적 비선형 거동을 고려하여 해석되어야 하며, 아치가 낮아질수록 좌굴발생 가능성이 높아짐을 알았다. 여러가지 형상의 아치에 대한 좌굴해석을 실시하여 임계 좌굴하중을 구하였으며 기존의 연구와 비교하여 정확성을 확인하였다. 원호 아치의 거동을 본 연구에서 사용한 무차원 매개변수를 이용하여 해석한 결과로 부터, 동일한 형상매개변수를 가진 아치들은 실제하중을 하중매개변수로 환산하여 같은 하중매개변수를 재하했을 때 시간매개변수에 따라 처짐비를 기준으로 같은 거동을 함을 알았으며, 좌굴현상도 같은 하중매개변수에서 나타남을 확인하였다. 또한, 포물선형상의 아치와 연직하중이나 집중하중이 재하된 경우의 해석에도 개발된 프로그램이 유용하게 사용될 수 있음을 해석예를 통하여 밝혔다.
본 논문에서는 강아치교의 고등해석과 최적설계를 수행하였다. 고등해석은 해석시에 구조계와 그에 속한 부재의 강도와 안정을 직접 고려함으로서, 해석후 개별부재의 강도검토가 필요없는 설계방법을 지칭한다. 기하학적 비선형 효과를 고려하기 위하여 안정함수를 사용하였다. 잔류응력으로 인한 점진적인 소성화를 고려하기 위하여 CRC 접선 탄성계수를 사용하였다. 탄성강성에서 완전소성강성까지 점진적인 소성화를 나타내기 위하여 포물선 함수를 사용하였다. 최적화 기법으로는 수정된 단면점증법을 사용하였다. 수정된 단면점증법은 AASHTO-LRFD의 상관방정식으로 계산된 값중에서 최대값을 가지는 부재의 크기를 단계별로 증가시키는 방법이다. 목적함수는 구조물의 중량을 사용하였으며, 제약조건식은 구조시스템의 하중-저항능력 및 처짐 조건을 고려하였다. 제안된 방법에 의한 설계결과를 기존의 연구결과와 비교하였다.
A numerical procedure for the analysis of slender arch buckling problems for uniform dead weight is presented in this paper. Such loading changes in the arch profile. The problem is nonlinear. The numerical procedure is limited to an inextensible analysis and to elastic behavior. Based upon a numerical integration technique developed by Newmark for straight beams, a large deflection bending analysis is combined with small deflection buckling routines to formulate the numerical procedure. The numerical procedure is composed of a combination of the numerical integration and successive approximations procedure. The results obtained in this study are as follows : 1.The critical loads obtained in this study coincide with the results by Austin so that the algorithm developed in this study is verified. 2.The numerical results are converged with good precision when the half arch is divided into 10 segments in both Prime and Quadratic section. 3.The critical loads are decreased as the ratios of rise versus span are increased. 4.The critical loads are increased as the moments of inertia at the ends are increased. 5.The critical loads of Prime section are larger than that of Quadratic section under the same profile conditions.
The differential equation, which can determine the dynamic critical loads for low parabcoic arches, is derived in this study. The dynamic critical loads of the parabolic arches subjected to a concentrated step load are nummerically analyzed for the changes of load positions. In cases of arches with different end conditions (both hinged, fixed hinged, both fixed), the effect of end conditions and that of the rises are investigated in detail. The summary of the results are the following: 1)The snapthrough does not occur when the rise of arch is very low, and the bifurcation appears clearly as the rise of arch increases. 2)The regions in which the dynamic critical loads are not defined for the both ends fixed are broader than that for the both ends hinged. 3)For all case, the load positions of minimum dynamic critical loads exsit at the near position from the end hinged. Thus, the results obtained in present study show that the magnitude of dynamic critical loads, the load positions of minimum dynamic critical loads and the regions in which the dynamic critical loads are not defined depend on end conditions of arches.
The governing differential equations and the boundary conditions for the free vibra- tion of the unsymmetric parabolic arch with fixed ends are derived on the basis of the equilibrium equations and the D'Alembert principle. The effect of the rotary inertia as well as the extensional and the flexural deformations is considered in the governing differential equations. A trial eigenvalue method is used for determining the natural frequencies. The Ru- uge-Kutta method is used in this method to perform the integration of the differential equations. The detailed studies are made of the lowest three vibration frequencies for the par- abolic chord length equal to 10m. The effect of the rotary inertia is analyzed and it's numerical data are presented in table. And as the numerical results the frequency versus the rise of arch and the radius of gyration are presented in figures.
This study aims to investigate the dynamic behaviour of a parabolic arch with initial deflection by using the elasto-plastic finite element model where the von-Mises yield criteria have been adopted. The initial deflection of arch was assumed by the high order polynomial of ${\omega}_i$ = ${\omega}_o$${(1-{(2x/L)}^m)}^n$) and the sinusoidal profile of ${\omega}_i$ = ${\omega}_o$$\sin$(n$\pi$x/L). Several numerical examples were tested considering symmetric initial deflection modes when the maximum initial deflection of an arch is fixed as L/500, L/1000, L/2000 or L/5000. The effects of polynomials order on the dynamic behavior of arch were not conspicuous. The most unfavorite dynamic response occurs when the maximum initial deflection varies from L/1000 to L/4000 if the initial deflection mode is represented by high order polynomials.
본 연구는 유한한 회전의 2차항을 고려한 변위장에 기초하여 변곡률을 가지는 비대칭 박벽곡선보의 해석이론을 제시한다. Vlasov의 가정에 의한 연속체의 선형화된 가상일의 원리로부터 총 포텐셜 에너지를 유도하고, 모든 변위 파라미터와 ? 함수는 도심에서 정의된다. 절점당 8개의 자유도를 가지는 박벽곡선보 요소의 개발 과정에서 3차 Hermitian 다항식이 형상함수로 이용된다. 본 연구의 타당성과 정확도를 입증하기 위하여, 일축대칭 단면을 갖는 포물선과 타원형상의 곡선보를 선택하여 3차원 자유진동해석과 안정성 해석을 수행한다. 그리고 이 결과를 ABAQUS의 쉘 요소에 의한 것과 비교한다.
This study aims to investigate the effects of partially distributed loads on the dynamic behaviour of steel parabolic arches by using the elasto-plastic finite element model based on the Von Mises yield criteria and the Prandtl-Reuss How rule. For this purpose, the vertical and the radial load conditions were considered as a distributed loading and the loading range is varied from 40% to 100% of arch span. Normal arch and arch with initial deflection were studied. The initial deflection of arch was assumed by the sinusoidal motile of ${\omega}_i\;=\;{\\omega}_O$ sin ($n{\pi}x/L$). Several numerical examples were tested considering symmetric initial deflection when the maximum initial deflection at the apex is fixed as L/1000. The analysis resluts showed that the maximum deflection at the apex of arch was occurred when 70% of arch span was loaded. The maximum deflection at the quarter point of arch span was occurred when 50% of arch span was loaded. It is known that the optimal rise to span ratio between 0.2 and 0.3 when the vertical or radial distributed load is applied. It is verified that the influence of initial deflection of radial load case is more serious than that of vertical load case.
This study aims to investigate the effect of partially distributed loads on the static behavior of parabolic arches by using the elastic-plastic finite element model. For this purpose, the vertical, the radial, and the anti-symmetric load cases are considered, and the ratio of loading range and arch span is increased from 20% to 100%. Also, the elastic-visco-plastic analysis has been carried out to estimate the elapse time to reach the stable state of arches when the ultimate load obtained by the finite element analysis is applied. It is noted that the ultimate load carrying capacities of parabolic arches are 6.929 tf/$m^2$ for the radial load case, and 8.057 tf/$m^2$ for the vertical load case. On the other hand, the ultimate load is drastically reduced as 2.659 tf/$m^2$ for the anti-symmetric load case. It is also shown that the maximum ultimate load occurs at the full ranging distributed load, however, the minimum ultimate loads of the radial and vortical load cases are obtained by 2.336 tf/$m^2$, 2.256 tf/$m^2$, respectively, when the partially distributed load is applied at the 40% range of full arch span.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.