• Title/Summary/Keyword: 포름알데하이드

Search Result 54, Processing Time 0.054 seconds

Intercomparison of Atmospheric Formaldehyde Measurement Results during the 2002 FORMAT Summer Campaign at Milan, Italy (2002년 여름 이태리 밀란 지역 FORMAT 캠페인 기간 대기 중 포름알데하이드 측정결과 비교)

  • ;;;;;Claudia Hak;Sebastian Trick
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.87-88
    • /
    • 2003
  • 포름알데하이드는 오염된 혹은 깨끗한 대기 환경에서 편재하는 오염물질이다. 일반적으로 깨끗한 대기 환경에서 수 ppt의 농도로 존재하지만 오염도가 높은 도시지역에서 여름철 심한 스모그 현상이 일어나면 수십 ppb의 농도를 보이기도 한다. 포름알데하이드는 1차 혹은 2차 대기오염물질이고, 탄화수소의 광화학 반응의 중간 생성물로써 포름알데하이드는 도시지역에서의 광화학 반응의 오염물질의 형성에 기여한다. 따라서 포름알데하이드의 측정은 CO의 지구적 수지(budget)와 다양한 대기 반응 물질 사이의 수지와 회전(cycling)을 이해하고 대류권의 광화학모델을 증명하는데 중요하다. (중략)

  • PDF

Weathering of Prunus sargentii Specimens Modified with Acetic Anhydride and Formaldehyde Vapor (무수초산 및 포름알데하이드 기상처리 산벚나무의 야외폭로 및 촉진열화)

  • Kang, Ho-Yang;Kim, Su-Won;Park, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.57-64
    • /
    • 2003
  • Small cherry specimens modified with acetic anhydride and formaldehyde vapor phase were weathered by outdoor exposure and accelerated conditioning in a climate chamber. The effects of the chemical modification were evaluated by measuring their weight percentage gains (WPG), hygroscopicity and color differences before and after weathering. The average WPGs of the 72 hour acetylated and formaldehyde-treated specimens were 8.1 and 15.7%, respectively. After outdoor exposure for more than 2 months, the acetylated specimens lost weights by only 1.5%, but the formaldehyde-treated did much more than the formers. It was revealed that acetylation reduced the hygroscopicity and discoloration of wood while formaldehyde treatment didn't. Moreover the longer is the formaldehyde treatment time the more degraded after weathering. It was concluded that the vapor-phase acetylation could be applied for improving the dimensional stability of old wooden blocks.

Investigation of Liquid Phase Formaldehyde Removal Efficiency by Enzymatic Formaldehyde Dehydrogenase and Catalytic Chemisorption Reactions (탈수소화효소 반응 및 촉매적 흡착 반응에 의한 액상 포름알데하이드의 제거 효율 연구)

  • Ham, Kyu Jin;Park, Min Seob;Choi, Kwon-Young
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.50-56
    • /
    • 2017
  • Formaldehyde is one of the toxic substances without any color and smell. Several methods to remove formaldehyde has been investigated up to now. Here, both the enzymatic and chemisorptive/catalytic liquid phase formaldehyde removal were investigated, and their catalytic activities in terms of specific activities were compared. Firstly, formaldehyde dehydrogenase (FDH) enzyme from Escherichia coli K12 was cloned, and expressed in Escherichia coli BL21(DE3). And the catalytic activity was characterized as $2.49{\times}10^3sec^{-1}mM^{-1}$ of $k_{cat}/K_m$ with 8.69 U/mg of the specific activity. Secondly, the chemisorptive and oxidative catalytic removals were investigated simultaneously. Activated carbons and zeolites treated with heat, KI, and KOH were used as chemisorption medium. And $Pd/TiO_2$ was used as an oxidative catalyst for the formaldehyde removal. All of the tested chemicals showed similar formaldehyde removal efficiencies of around 50%. However, the specific activity of FDH dependent formaldehyde removal was absolutely higher than that of using chemisorptive and catalytic removal processes with the ranges of 0.01 to 0.26 U/g.

Control of relative humidity in the static bag emission test method by adding water and its effect on formaldehyde emission intensity (백을 이용한 정적 방출시험 방법에서 수분공급을 통한 상대습도조절과 포름알데하이드의 방출강도에 미치는 영향)

  • Park, Cheol-Soon;Yoo, Ji-Ho;Kim, Man-Goo
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.282-289
    • /
    • 2011
  • Rapid screening method for the determination of the emissions of pollutants from vehicle interior parts and materials have been developed as ISO 12219-2 which is using bag and based on a static condition. The method was not controlled humidity in the test bag, so it is not suitable test method for formaldehyde emission test which is highly related to humidity condition. In this study, possibility of control humidity in the static test bag by adding extra water and the effect of humidity condition for formaldehyde emissions have been investigated. The relative humidity in the test bag was affected not only amount of water added also material of test bag and test specimen. The emission intensity of formaldehyde was increased according to increasing relative humidity in test bag. But excessively supplied water was condensed on the inner surface of test bag and surface of sample specimen that were sorption formaldehyde and were reduced its emission intensity.

Some considerations for the determination of carbonyl compounds in air: Reaction characteristics of formaldehyde with 2.4-DNPH (대기 중 카보닐 계열 성분의 분석기법의 연구: 포름알데하이드와 DNPH의 반응 특성을 중심으로)

  • Hong, Y.J.;Kim, K.H.
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.43-50
    • /
    • 2005
  • A number of carbonyl compounds including formaldehyde and acetaldehyde are well known for their toxicity and irritancy. Hence, acquisition of both qualitative and quantitative tool for their analysis is essential to resolve issues associated with malodor or indoor pollution. Using HPLC/UV method, we examined various aspects involved in the measurements of formaldehyde in environmental samples. The results of our analysis indicated that its detection was made as low as 0.5 ppb (assuming 5 L of sample volume), while its precision was maintained near 2% in terms of relative standard error (RSE). When the stability of calibration was checked by variability of slope values obtained over long-term period (e.g., one month), its values were found to remain constantly with RSE values of 3%. It was also found that liquid-phase reaction between formaldehyde and DNPH proceed very slowly to attain equilibrium (one and half hour), while requiring adequate amount of DNPH to form their derivatives. The overall results of our study thus suggest that there are a number of factors to consider for the accurate analysis of formaldehyde in ambient air.

Production of Bio-Carbon from Unused Biomass through CO2 Activation: Removal Characteristics of Formaldehyde and Acetaldehyde (미이용 바이오매스의 이산화탄소 활성화를 통한 바이오카본 생산: 포름알데하이드 및 아세트알데하이드 제거 특성)

  • Kim, JongSu;Choi, SeukCheun;Lee, Uendo;Park, EunSeuk;Jeong, Soohwa
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.325-331
    • /
    • 2021
  • In this study, bio-carbons were produced by activation process from unused biomass (Grade 3 wood pellet and spent coffee grounds) to determine the removal performance of formaldehyde and acetaldehyde. The activation experiments were conducted in a fixed bed reactor using CO2 as an activation agent. The temperature of the activation reactor and input of CO2 were 900 ℃ and 1 L min-1 for all the experiments. The maximum BET surface area of about 788 m2 g-1 was obtained for bio-carbon produced from Grade 1 wood pellet, whereas about 544 m2 g-1 was achieved with bio-carbon produced from spent coffee grounds. In all the experiments, the bio-carbons produced were mainly found to have micro-porous nature. A lower ash amount in raw material was favored for the high surface area of bio-carbons. In the removal test of formaldehyde and acetaldehyde, the bio-carbon produced from spent coffee grounds showed excellent adsorption performance compared with woody biomass (Grade 1 wood pellet and Grade 3 wood pellet). In addition, the comparative experiment of commercial impregnated activated carbon and bio-carbon produced from spent coffee grounds was conducted. In terms of formaldehyde removal performance, the commercial impregnated bio-carbon was excellent, while bio-carbon produced from spent coffee grounds was excellent in acetaldehyde removal.

Formaldehyde Adsorption Properties of Activated Carbon Fiber-Papers by Nitrogen Plasma Treatment (질소 플라즈마 처리에 따른 활성탄소섬유 페이퍼의 포름알데하이드 흡착 특성)

  • Min, Chung Gi;Lim, Chaehun;Myeong, Seongjae;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.624-629
    • /
    • 2022
  • Formaldehyde is an indoor pollutant that is harmful to humans, such as causing respiratory and skin diseases. Nitrogen plasma treatment was performed to introduce nitrogen groups on the surface of the activated carbon fibers (ACFs), and the adsorption characteristics of formaldehyde for the surface-modified ACFs were considered. As the nitrogen gas flow rate increased, the content of nitrogen functional groups introduced to the surface of the ACFs increased by about 7%, and the ratio of nitrogen functional groups to each type present was similar. Ultramicropores increased on the ACFs surface due to the etching effect of plasma treatment. The adsorption efficiency of formaldehyde on the modified ACFs surface was also enhanced. However, under the nitrogen flow rate of 120 sccm or more, the surface of the ACFs was excessively etched, and the specific surface area and the formaldehyde adsorption capacity decreased. Therefore, the content of the nitrogen groups is the main factor in the adsorption of formaldehyde on the nitrogen plasma-treated ACFs, but it can be found that the adsorption efficiency of formaldehyde is improved when the ACFs have a suitable pore structure.

Measurements of HCHO, NONO, NO$_2$, and $O_3$ using LP-DOAS at Milan, Italy (차등 흡수 분광법을 이용한 이태리 밀란 지역의 HCHO, HONO, NO$_2$, $O_3$ 측정)

  • 이철규;이정순;김규수;김은영;홍상범;김영준;이재훈
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.179-180
    • /
    • 2002
  • 포름알데하이드는 오염된 혹은 깨끗한 대기 환경에서 편재하는 오염물질이다. 일반적으로 깨끗한 대기 환경에서 수 ppt의 농도로 존재하지만 오염도가 높은 도시지역에서 여름철 심한 스모그 현상이 일어나면 수십 ppb의 농도를 보이기도 한다. 포름알데하이드는 1차 혹은 2차 대기오염물질이고, 탄화수소의 광화학 반응의 중간 생성물로써 포름알데하이드는 도시지역에서의 광화학 반응의 오염물질의 형성에 기여하며, 발암물질로서 인체에 유해한 것으로 알려져 있다. (중략)

  • PDF