• Title/Summary/Keyword: 폐자원의 재활용

Search Result 380, Processing Time 0.021 seconds

Recovery of Copper from Waste Printed Circuit Boards by High-temperature Milling Process (고온 밀링 공정을 통한 폐인쇄회로기판으로부터 구리 회수)

  • Woo-chul Jung;Byoungyong Im;Dae-Geun Kim
    • Resources Recycling
    • /
    • v.33 no.4
    • /
    • pp.22-28
    • /
    • 2024
  • Waste PCBs contain a large amount of valuable resources, including copper, and technology to recover them is constantly being developed. Generally, to recycle waste PCBs, a physical pretreatment process such as shredding and crushing is required. However, during this stage, the loss rate of metals is high and the sorting efficiency is low, indicating a need for a more efficient recycling pretreatment process. In this study, a high-temperature milling process, which simultaneously employs heat treatment and ball milling, was utilized to efficiently recover copper from waste PCBs. An experiment was conducted at 350 ℃ with milling time, milling speed, and the weight of the balls as variables. The results showed a copper recovery rate of over 90% under the conditions of a ball weight of 500 g, a milling speed of 70 RPM, and a milling time of 5 hours. The purity of the recovered copper was approximately 93%, and through post-processing after the high-temperature milling process, the feasibility of reusing the recovered copper as a high-purity material was confirmed.

A Development of Cold-Mixed Reclaimed Asphalt Pavement Materials (도로포장용 상온 재생 아스팔트 혼합물 개발)

  • Lee, Jong-Man;Kim, Nak-Seok;Kim, Wan-Sang;Hong, Eun-Cheol
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.1-7
    • /
    • 2009
  • In order to use recycled aggregate as pavement base or subbase materials, the US and many other European countries have started research since the early 1980s. Korea also had a recycle idea as a plan for the vast amount of construction wastes due to the downtown renovation in the 1990s, but was not put into practical use. After the resources saving and recycle expedition law in 1994, wastes from construction sites that have more than a certain amount of construction budget were recycled as pavement base and subbase materials, but now, researches are being conducted to use them as paving materials. The use of construction wastes is meaningful in many ways. It helps the natural conservation and aggregate consumption, and also improves pavement performance. This research presents a development of cold-mixed reclaimed asphalt pavement materials using recycled aggregates.

Overview on Pyrometallurgical Recycling Process of Spent Lithium-ion Battery (건식 공정을 통한 리튬이차전지의 재활용 연구 동향)

  • Park, Eunmi;Han, Chulwoong;Son, Seong Ho;Lee, Man Seung;Kim, Yong Hwan
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.27-39
    • /
    • 2022
  • The global demand for lithium-ion batteries (LIBs) has been continuously increasing since the 1990s along with the growth of the portable electronic device market. Of late, the rapid growth of the electric vehicle market has further accelerated the demand for LIBs. The demand for the LIBs is expected to surpass the supply of lithium from natural resources in the near future, posing a risk to the global lithium supply chain. Moreover, the continuous accumulation of end-of-life LIBs is expected to cause serious environmental problems. To solve these problems, recycling the spent LIBs must be viewed as a critical technological challenge that must be urgently addressed. In this study, recycling LIBs using pyrometallurgical processes and post-processes for efficient lithium recovery are briefly reviewed along with the major accomplishments in the field and current challenges.

The Main Contents of the Countermeasures for Recycling of Used Metal Resources (환경부(環境部) "폐금속자원(廢金屬資源) 재활용(再活用) 대책(對策)"의 주요(主要) 내용(內容))

  • Kim, Soo-Kyung
    • Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.3-12
    • /
    • 2010
  • Countries which have a lot of metal resources are weaponizing metal resources such as supply limitation, high price sale. It's necessary for us to establish the countermeasure for recycling of used metal resources on a government basis. Ministry of Environment has established and announced the project for finding and reuse the hidden metal resources as pan-government department pass the Cabinet meeting at September 22, 2009. This countermeasure, 10 years project, is classified into 2 steps. Aim of this project is advance of the recycling technology and industry, achievement of recycling rate, 75%, improvement in adverse balance of trade, 1.25 billion US$.

Chemical Recycling Technology from Polyester Wastes (폴리에스터 폐자원의 화학적 재활용기술)

  • Han, Myung-Wan;Kang, Kyung-Suk;Song, Jae-Kyung
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.96-103
    • /
    • 2012
  • This paper reviews recent technologies for recycling poly (ethylene terephthalate) wastes. Wide application and non-biodegradability of the PET creates huge amounts of waste and disposal, leading to an environmental problem and economic loss. Chemical recycling can be a promising technology to deal with these problems by converting the waste into useful feedstock material for polyester production. Chemical recycling of polyethylene terephthalate are processes where the PET polymer chain is destructed by the impact of glycol (MEG) causing glycolysis, methanol causing methanolysis or water causing hydrolysis. After intensive purification polyester oligomers or the monomers MEG, dimethyl telephthalate (DMT) or purified terephthalic acid (PTA) are received which are re-used to produce polyester products.

폐폴리우레탄의 자연발화에 관한 연구

  • 최재욱;목연수;이동훈
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.11a
    • /
    • pp.287-290
    • /
    • 2002
  • 경제와 전력사용이 호전됨에 따라 냉장기술의 개발이 크게 촉진되면서 진공단열 기술개발을 통한 단열효과 등으로 가전제품의 기술이 세계수준에 도달하였고, 지속적인 기술의 발달로 사용량이 증가하고 있다. 이런 가전제품의 사용증가는 필연적으로 수명이 다한 폐가전 제품이 발생하게되고, 이들을 방치함으로서 환경오염을 일으키게 되었고 정부는 폐가전 제품을 재활용하고 폐기물을 최소화하는 방법을 기업에 요구함과 동시에 폐기물관리법과 자원의 절약과 재활용 촉진에 관한 법률을 제정 공포하게 되었다.(중략)

  • PDF

A Study on Physical Characteristics and Plastics Recycling of Used Small Household Appliances (폐소형가전의 물리적 성상 분석 및 플라스틱 재활용에 관한 연구)

  • Choi, Woo Zin;Park, Eun Kyu;Kang, Seok Hwan;Jung, Bam Bit;Kim, Soo Kyung
    • Resources Recycling
    • /
    • v.25 no.1
    • /
    • pp.31-39
    • /
    • 2016
  • Small household appliances such as electric rice cooker, a vacuum cleaner, an electric fan, etc. are diverse and complex due to the materials and components and waste streams from the manufacturing processes. In the present study, physical characterization of small e-wastes was analyzed on major items including electric rice cooker after manual dismantling. Small household appliances is an important potential source of waste plastic, however, recycling plastics from small e-waste is still unusual. The present communication gives results of separation processes on black plastics and the limitations of these sorting processes in used small household appliances.

Development of Pulsating Heat Pipe type Waste Heat Recovery Ventilator Using an used Radiator for Vehicles (자동차용(自動車用) 폐(廢) 라디에이터를 이용한 히트 파이프형 환기배열(換氣排熱) 회수기(回收器)에 관한 연구(硏究))

  • Im, Yong-Bin;Choi, Sang-Joe;Kim, Jeong-Hoon;Kim, Jong-Soo
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.30-37
    • /
    • 2006
  • For keeping the indoor air quality, we develop the pulsating heat pipe(PHP) type heat recovery ventilator using an used radiator for vehicles. We compare the PHP type with existing model. There are some merits that are able to change the unit number according to heat load and show us the similar performance to existing models.

Recycling Technologies of Waste Lubricating Oils and Their Promotion Policies in Korea and Foreign Countries (국내외 폐윤활유의 재활용기술 현황 및 재활용 촉진대책 조사분석)

  • Bae, Jae-Heum;Kwon, Sun-Dae
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.113-127
    • /
    • 2006
  • Waste lubricating oil(WLO)s have been recycled as energy source through direct fuel in cement kilns and fossil power plants, or as fuel oils, or re-refined lubricating base oils. In our country, they have been recycled as low grade fuel oil through chemical treatment process. In 2003, extended producer responsibility (EPR) system was adopted from deposit system on sale of lubricating oils in order to promote their recycleing rate. However, our recycling rate of WLOs have been stagnant(below 70%) for last 5 years. And there has been no research work on recycling of WLOs as re-refined base oil until now in this country. Stabilization technology of thermally cracked oils to reduce tar and malodor and to improve their color for production of high grade fuel oil, and a novel process production of high grade re-refined lubricating base oil from WLOs have been developed and commercialized recently in Canada and U.S.A., respectively. Several countries like Australia, Italy, Germany and U.S.A., etc. are encouraging recycling companies to recycle WLOs as re-refined lubricating oil by giving greater subsidies or benefits compared to other recycling methods. They also adopt a policy to purchase re-refined lubricating oil preferentially in the federal or local governments and to recommend consumers to purchase it willingly. Based on the facts that several advanced countries have adopted a policy to recycle WLOs as re-refined base oil for saving of petroleum resource and reduction of environmental pollution, it is right time to be considered that our present policy for recycling of WLOs should be reevaluated and the new policy of their environmental-friendly and sustainable recycling should be established.

  • PDF

Life Cycle Assessment(LCA) of Rubber Recycling Process in Waste Tire (폐타이어 고무 재활용 공정의 전과정평가 연구)

  • Ahn, Joong Woo;Kim, Jin Kuk
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.74-83
    • /
    • 2018
  • This study conducted the Life Cycle Assessment(LCA) on waste rubber recycling technology for recovering rubber product from the waste tires. Environmental impacts were assessed for the five categories of impacts: global warming, resource depletion, acidification, eutrophication, photochemical oxide production, and ozone layer depletion. When recycling 1ton of waste tire containing rubber, global warming impact was 1.77E+02 kg $CO_2-eq.$, resource depletion impact was 1.23E+00 kg Sb-eq., acidification impact was 5.92E-01 kg $SO_2-eq.$, eutrophication impact was 1.23E-01 kg $PO{_4}^{3-}-eq.$, photochemical oxide production impact was 3.42E-01 kg $C_2H_4-eq.$, and ozone layer depletion impact was 1.87E-04 kg CFC11-eq. In terms of overall environmental impacts, carbon, softener and electricity the greatest impact, so it is necessary to compare the environmental impacts of the raw materials to replace carbon and softener, and a method to reduce the filler usage in the process is needed. In addition, it is necessary to improve energy efficiency, change to low-energy sources, and apply renewable energy.