• Title/Summary/Keyword: 폐광지역

Search Result 197, Processing Time 0.024 seconds

Potential Contamination of Soil and Groundwater from the Residual Mine Tailings in the Restored Abandoned Mine Area : Shihung Mine Area (페광산 복구지역 잔류장미로 인한 주변 지하수${\cdot}$토양 오염가능성-시흥광산 사례)

  • 정예진;이상훈
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.461-470
    • /
    • 2001
  • The Shihung mine was restored in the early 90's after abandonment for 20 yews since 1973. Although disposed mine tailings were removed and the site was replaced by an incineration plant, still some residual mine tailings remain in the places including the old mine tailing ditposal area and the adjacent agricultural area. These residual mine tailings are prone to impose an adverse impact on the soil and groundwater and needs investigation for the potential contamination. Mine tailing samples were collected from the old tailing disposal area and the iii paddy. The porewater from the mine tailing were extracted and analysed to investigate chemical changes along the reaction path. Batch leaching tests were also carried out in the laboratory to find any supporting evidence found in the field analysis. Evidence of elemental leaching was confirmed both by the mine tailing and the porewater chemistry in them. The element concentrations of Cu, Cd, Pb, Zn in the porewater exceed the standard for drinking water of Korean government and US EPA. Leaching of heavy metals from the mine tailing seem to be responsible for the contamination. In batch leaching test. heavy metals were either continuous1y released or declined rapidly. Combining the information with porewater variation with depths and the geochemical meodeling results, most of elements are controlled by dissolution and/or precipitation processes, with some solubility controlling solid phases (Cu, Pb, Fe and Zn). Batch leaching test conducted at fixed pH 4 showed much higher releases for the heavy metals up to 400 times (Zn) and this area is becoming more vulnerable to soil and groundwater pollution as precipitation pH shifts to acidic condition.

  • PDF

Variations in Geochemical characteristics of the Acid Mine Drainages due to Mineral-Water Interactions in Donghae Mine Area in Taebaek, Korea (태백 동해광인일대의 물-광물의 반응에 의한 산성광산배수의 지구화학적 특성 변화)

  • 김정진;김수진
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.55-66
    • /
    • 2002
  • There are several abandoned coal mines around Donghae mine area in the Taebaek coal field. Two major creeks, Soro and Sanae, are contaminated with the colored precipitates formed from the coal mine drainages. Bed rocks of the study area consist of limestone, shale, and sandstone. Limestone consisted mainly of calcite and dolomite, and shale of quartz, pyropyllite and chlorite, and sandstone of quatz and illite. Coal coal spoil dumps composed mainly of pyrite and chlorite. The oxidative dissolution of sulfide minerals leads to acid mine drainage and adds the metal ions in the stream water. The ion concentrations of Fe, Ca, Mg, Al, Si, SO$_{4}$in the stream polluted by AMD are generally higher than those in the unpolluted stream water. High concentrations of Ca and Mg, Al and Si can be resulted from dissolution of carbonate minerals such as calcite, dolomite and aluminosilicates such as chlorite, pyrophyllite. Although the Fe, Al, Si, SO$_{4}$ contents are considerbly high in the acid water released from the mine adits, they become decreased downstream due to dilution of unpolluted water and precipitation of oxide/hydroxide and sulfate minerals on the bottom of stream.

Geochemical Contamination Assessment and Distribution Property Investigation of Heavy Metals, Arsenic, and Antimony Vicinity of Abandoned Mine (폐광산 인근지역에서 중금속, 비소, 안티모니의 지구화학적 오염도 평가 및 분산 특성 조사)

  • Han-Gyum Kim;Bum-Jun Kim;Myoung-Soo Ko
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.717-726
    • /
    • 2022
  • This study was conducted to assess the geochemical contamination degree of As, Cd, Cu, Pb, Sb, and Zn in the soil and water samples from an abandoned gold mine. Enrichment Factor (EF), Geoaccumulation Index (Igeo), and Pollution Load Index (PLI) were carried out to assess the geochemical contamination degree of the soil samples. Variations of sulfate and heavy metals concentration in water samples were determined to identify the geochemical distribution with respect to the distance from the mine tailing dam. Geochemical pollution indices indicated significant contaminated with As, Cd, Pb, and Zn in the soil samples that areas close to the mine tailing dam, while, Sb showed similar indices in all soil samples. These results indicated that the As, Cd, Pb, and Zn dispersion has occurred via anthropogenic sources, such as mining activities. In terms of water samples, anomalies in the concentrations of As, Cd, Zn, and SO42- was determined at specific area, in addition, the concentrations of the elements gradually decreased with distance. This result implies the heavy metals distribution in water has carried out by the weathering of sulfide minerals in the mine tailing and soil. The study area has been conducted the remediation of contaminated soil in the past, however, the geochemical dispersion of heavy metals was supposed to be occurred from the potential contamination source. Therefore, continuous monitoring of the soil and water is necessary after the completion of remediation.

Survey and Numerical Analysis Cases of Ground Subsidence by Mine Goaf (광산 채굴적으로 인한 지반침하 조사 및 해석 사례)

  • Hyun-Bae Park;Seong-Woo Moon;Sejeong Ju;Jeungeum Lee;Yong-Seok Seo
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • South Korea's mining industry was actively developed until 1980, but subsequent declining profitability forced many mines to close. Most of the abandoned mines are susceptible to persistent subsidence because of the length of time since mining ceased. Accurate prediction of the locations and times of subsidence is difficult; therefore, this study aims to apply continuum analysis to past cases of subsidence to establish a method of predicting the location and magnitude of future subsidence. The study area is an area of ○○ mining located between the Yangsan fault zone and the Moryang fault zone, in which three subsidence events occurred between 2005 and 2009. Drilling surveys and electrical resistivity surveys were performed at subsidence sites determined the distribution of strata, and through laboratory tests obtained the physico-mechanical properties of the rock. Numerical analysis of the results found that the plastic status area includes the areas of actual subsidence and that continuum analysis can also be used to predict the location and magnitude of subsidence caused by mine goaf.

Feasibility Study of Slug Test in Unsaturated Mine Tailings Pile of the Imgi Abandoned Mine in Busan (부산임기광산 폐석적치장에서의 순간충격시험 적용성 연구)

  • Park, Hak-Yun;Ju, Jeong-Woung;Cheong, Young-Wook;Yeo, In-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.10-16
    • /
    • 2007
  • The slug test by adding water to well and measuring falling head was conducted to investigate the hydrogeological property of unsaturated or partially saturated mine tailings in the Imgi abandoned mine in Busan. In case that wells were installed with a full screen through two layers with different hydraulic properties, Bouwer and Rice method was useful to estimate the hydraulic conductivity and the depth of mine tailings. In particular, when groundwater dried out in the dry season, the slug test performed by adding water into well to form artificial water table and then conducting falling head test produced the reasonable hydraulic conductivity values. The slug test using falling head test can be an alternative to investigate the hydrogeological property of abandoned mine tailings.

The Effect Estimation of Heavy Metals on the Microbial Activity during Leaf Litter Decomposition (낙엽분해동안 미생물 활성에 미치는 중금속의 영향 추정)

  • Shim, Jae-Kuk;Shin, Jin-Ho;Yang, Keum-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.6
    • /
    • pp.887-892
    • /
    • 2011
  • This study was to find out influence of heavy metal concentration in plant on microbial activities during decomposition of Artenmisia princeps var. orientalis and Equisetum arvense collected from an abandoned mine and control site in Cheongyang-gun Chungcheongnam-do. Microbial respiration rate showed the highest value at the time of the first collection, and then tended to decline over time. The highest microbial respiration rate appeared in leaf litters with low heavy metal contents, and A. princeps var. orientalis and E. arvense collected and decomposed at the control site showed the fastest decomposition rate. For both A. princeps var. orientalis and E. arvense, litters with low heavy metal content appeared to have higher microbial biomass. There was apparent quantitative correlation between decomposition rate and cumulative respiration rate of leaf litters, and between decomposition rate and microbial biomass of leaf litters. Thus, the study result showed that leaf litter with higher heavy metal content had a negative impacts on the growth and activity of microbial decomposer during decomposition processes.

A Study on Fractions and Leaching Potential of Heavy Metals in Abandoned Mine Wastes (휴ㆍ폐광산지역에서 폐재내 중금속의 존재형태 및 용출특성에 관한 연구)

  • 김휘중;양재의;이재영;전상호
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.45-55
    • /
    • 2003
  • This study investigates the fractional composition and the leaching characteristics of heavy metals in polluted soils due to mining activities. The fractionated composition of heavy metals is classified into five fractions; adsorbed, carbonate, reducible, organic and residual fraction. The status of humic substances in mine wastes of most sites are polyhumic except tailing from Sangdong mine. According to the sequential extraction procedures (SEPs), leaching probabilities of Cd in coal wastes and tailing are relatively low due to high percentage of residual fraction. 46.4% of Ni in tailings from Sangdong mine is probably leached under oxidized environment, and 39.4% of Cu in these tailings is readily extracted under strongly oxidized environment by organic fraction. According to leaching condition of pH 3.0 and pH 5.6, the amount of heavy metals leached out of coal wastes and tailing increases to 1/2 hours. At pH 3.0 and pH 5.6, concentration of Ni in tailing increases up three times of the initial value. Heavy metals released from coal wastes and tailing were not influenced significantly by leaching time.

Distribution Correlation between Heavy Metals Contaminants and PAHs Concentrations of Soils in the Vicinity of Abandoned Mines (폐광산지역 토양에서 중금속과 PAHs 농도 분포 상관관계)

  • Ki, Seong-Kan;Park, Ha-Seung;Jo, Rae-Hyeon;Choi, Kyoung-Kyoon;Yang, Hyun;Park, Jeong-Hun
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.239-244
    • /
    • 2014
  • BACKGROUND: Heavy metals contamination of soils in the vicinity of abandoned mines in South Korea has been investigated. However, PAHs contamination rarely has been studied. Both heavy metals and PAHs concentrations have been measured in this study. METHODS AND RESULTS: The samples of soil and sediment were collected from the vicinities of three abandoned coal mines and two abandoned metal mines for analysis of heavy metals contaminants and PAHs concentration from April to September 2012. After preparation of these samples following the Korean standard test method for soils, the concentrations of heavy metals contaminants and PAHs were measured using ICP-OES and GC-MS, respectively. It was observed that the concentration of Arsenic was above the concern level based on 'area 1' suggested by Korean soil conservation law, resulting that Arsenic is the main contaminant in these areas. Also Cd, Cu, Pb and Zn were observed as a partial contaminants. The concentrations of other investigated components including benzo(a)pyrene were less than the concern level. CONCLUSION: The correlation observed between Arsenic (as main contaminant) and PAHs concentrations suggested that the contaminant source and pathway are different for each other. The effect of mine activity on PAHs concentration was rarely observed.

Statistical Assessment on the Heavy Metal Variation in the Soils around Abandoned Mine(Case Study for the Samgwang Mine) (폐광산지역 토양 중금속원소들에 대한 통계학적 환경오염 특성평가)

  • Cho, Il-Hyoung;Chun, Suk-Young;Chang, Soon-Woong
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1451-1462
    • /
    • 2007
  • Heavy metal concentrations in the soil were investigated for the abandoned Samkwang metal mine, Cheongyang-Gun, Chungnam Province, Korea. The concentrations of heavy metal(As, Cd, Cu, Ni, Pb, Zn) were determined in mine soils collected at the abandoned mine sites to obtain a general classification and specification of the pollution in this highly polluted region. The results estimated with the normal test and basis statistic on the central tendency and variation showed that the distribution of heavy metal concentration had significantly different at the range of all locations. The range of spatial distribution on the relationship of heavy metal concentration and pH was $4.8{\sim}8.8$ and heavy metal concentration on the type of land use was highest in forest land, and also Ni and Zn in farm and rice field showed the high concentration. The distribution of heavy metal concentration on the depth of a soil showed that the metal concentrations in subsoil were higher than of those in surface soil, while the concentration of Cu and Ni had no significant difference on the depth of soil. Results from the correlation analysis using the data except the extreme and unusual data revel that Zn-Cd(r=0.867), Zn-As(r=0.797), Zn-Pb(r=0.764), Cu-Cd(r=0.673), Cu-As(r=0.614) and Zn-Ni(r=0.605) were the most important parameters in assessing variations of heavy metal in soil. To discriminate pattern differences and similarities among samples, principal factor analysis(PFA) and cluster analysis(CF) were performed using a correlation matrix. This study suggests that PFA and CF techniques are useful tools for identification of important heavy metal and parameters. This study presents the necessity and usefulness of multivariate statistical assessment of complex databases in order to get better information about the quality of soil and gives the basis information to clean up the abandoned mine sites.

Blood Lead Level in Populations Resident in Some Abandoned Mine Area (충청북도 일부 폐광산 지역 주민의 만성 납 노출 정도 평가)

  • Song, Sun-Ho;Eom, Sang-Yong;Kim, Yong-Dae;Kim, Heon;Hong, Jang-Soo
    • Journal of Environmental Science International
    • /
    • v.19 no.4
    • /
    • pp.527-532
    • /
    • 2010
  • Exposure to lead, particularly at chronic low-dose levels, is still a major public health concern. The present study is aimed to evaluate the blood lead levels in populations resident in some abandoned mine areas of Chungbuk, Korea. Eight hundreds and sixty-six subjects who reside in abandoned mine area located in Chungbuk, Korea, were enrolled this study. We evaluated the blood lead level according to the age, gender, and working history in mines. For statistical analysis, SPSS ver 12.0 was used. The geometric mean blood lead levels was $2.93\;{\mu}g/{\ell}$ and nobody showed levels over the guidelines of WHO. Ex-smokers and current-smokers showed significantly higher blood lead levels compared to that of non-smokers. The blood lead levels in individuals with a history of working in a mine was higher than those in individuals without such histories. The populations resident in some Chungbuk abadoned mine area showed low levels of lead in blood. This suggest that lead poisoning might not be induced by abandoned mine in Chungbuk, Korea.