• Title/Summary/Keyword: 폐골재

Search Result 206, Processing Time 0.028 seconds

A Study on the Promotion of Combustible Construction Waste Recycling (가연성 건설폐기물의 자원화 제고를 위한 방안)

  • Park, Ji-Sun;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.89-95
    • /
    • 2009
  • The current enforce decree of "The Act on the Promotion of Construction Waste Recycling" divides seventeen kinds of construction wastes by property and configuration. Mixed construction waste, one of them classified by the enforce decree, is composed two more than justified construction wastes except refuse soil and rock. In construction wastes justified by enforce decree of this law, most refuse concrete and asphalt concrete of construction wastes are recycled. As well as refuse metal is separated, sorted from bulk them, and merchandised for value. Finally this is used the secondary manufactured products. Even though combustible construction wastes like refuse wood, plastics, fiber can be recycled RDF(Refuse derived fuel) or RPF(Refuse plastic fuel) because of high caloric value and low heavy metal but most of them are discharged as mixed construction waste and then treated by treated by incineration and landfill. Therefore, to control construction waste flow efficiently, construction wastes are classifies first combustible, incombustible, mixed combustible, incombustible and etc. in this study. The combustible waste is consisted refuse wood, plastics, fiber and etc. and incombustible waste contains refuse concrete, asphalt, and etc. Mixed construction is construction waste that can not separate from mixed waste bulk with different kinds.

  • PDF

Properties of Lightweight Foamed Concrete According to the Replacement Ratio of Waste Concrete Sludge and Variation of Foam Ratio (폐콘크리트슬러지 대체율과 기포혼입률 변화에 따른 경량기포콘크리트의 특성)

  • Lee, Jung-Goo;Kim, Jae-Won;Choi, Hun-Gug;Kang, Cheol;Lee, Do-Heun;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.53-56
    • /
    • 2007
  • Recently, waste concrete emission has been increased by acceleration of urban development and the rapid growth of redevelopment projects, so recycling of waste concrete is actively progressed, But the usage is limited to a lower value added such as the roadbed material etc. To produce the high quality recycled aggregate, breaking and washing process is added to the existing process and inevitably increases the occurrence of particle, because old mortal is included in the recycled aggregate. Therefore, this study purpose is analysis the properties of lightweight foamed concrete made by waste concrete sludge which is the by-product from produce the recycled aggregate. In result, possibility of manufacture of lightweight foamed concrete which gives equal performance compared with ALC was detect(scope of density : $0.5{\sim}0.6$, scope of compressive strength : $3.5{\sim}4.0MPa$). And scope of porosity is as follow ; total porosity : $27{\sim}30%$, open porosity : $1{\sim}5%$

  • PDF

An Experimental Study on the Properties of Lightweight Aggregate Concrete Using Waste PET Bottles (폐 PET병을 이용한 경량골재콘크리트의 특성에 관한 실험적 연구)

  • 최연왕;정지승;문대중;신화철;황윤태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.211-216
    • /
    • 2002
  • Recently, the more the PET bottles are needed, the more waste PET bottles were produced. So, if there was no suitable recycling, that was contaminate our environment and use up the natural resources. This paper deals with the artificial lightweight aggregate(ALA), made of waste PET bottles, and the properties of concrete replaced with ALA. As a result of experiment, it is shown that the specific gravity of PBLA is 1.39, the unit volume weight is 844 kg/$cm^3$, and absorbing rate is 0. In absorbing rate test, the rate is 10 % increased by replacing of 20 % PBLA and the mixture rate for water and cement is 44.6 % and 51.2 %, in case target strength for 240kgf/$cm^2$, and 270kg/$cm^2$, by added PBLA 75 % and 50 % respectively. So, to obtain a certain target strength, appropriate W/C ratio is required the replacement ratio of PBLA.

  • PDF

Fundamental Study on Recycling Waste Foundry Sand as Fine Aggregate for Concrete (폐주물사를 콘크리트용 잔골재로 재활용하기 위한 기초연구)

  • 문한영;최연왕;송용규;신동구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.281-286
    • /
    • 2001
  • The development of automobile, vessel, rail road, and machine industry leads increase of foundry production used as their components, which cause a by-product, waste foundry sand (WFS). The amount of the WFS produced in Korea is over 900,000 ton a year, but most WFS buries itself and only 5~6% WFS is recycled as a material in construction materials. In this study, WFS is used as a fine aggregate for concrete. Five types of concretes aimed at the specified strength of 240$\pm$10 kgf/$cm^{2}$ , air contents of 4.5$\pm$1% and slump of 12$\pm$1.5cm were mixed with washed coarse seashore sand(WFS) in which salt was removed and then optimum mix proportion of concrete was determined. Moreover, basic properties such as setting time, workability, bleeding and slump loss of the fresh concrete with WFS were tested and compared with those of the concrete mixed without WFS. In .addition, both compressive strength of hardened concrete at each ages and tensile strength of it at the age of 28 days were measured and discussed.

  • PDF

Raw Materials Composition of Recycled Cement from Waste Concrete Powder (폐콘크리트 미분말을 활용한 재생시멘트의 원료조합)

  • Kwon, Eun-Hee;Ahn, Jae-Cheol;Park, Dong-Cheon;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.61-62
    • /
    • 2012
  • This study is for analyzing possibility of utilizing as cement from waste concrete. The scrapped fine powder which contains a large amount of hydrate of cement can supercede lime stone, and greenhouse gas reductions are expected. However, Fine Aggregate powder efficient separation technology development is essential for that limestone substitution effect and reduce greenhouse gas emissions in order to facilitate through the recycling of the scrapped fine powders.

  • PDF

The Quality of artificial lightweight aggregates using waste PET bottles and Properties of their mortar (폐 PET병을 재활용한 인공경량골재의 품질 및 모르타르의 특성)

  • Choi, Yung-Wang;Lim, Hak-Sang;Chung, Jee-Seung;Choi, Wook;Hwang, Youn-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.631-636
    • /
    • 2002
  • This study shows basic data for using as the structural lightweight aggregate. This will be the procedural method of recycling environmental close waste PET bottle lightweight aggregate(PBLA) that is rapidly increased the amount of production of waste PET bottle recently, the quality of developed PBLA and the fundamental properties by analyzing of mortar containing with PBLA. After experiment, the result shows the PBLA quality that have oven dry specific gravity of 1.39, unit volume weight of 844 kg/m$^3$ and absorption rate of 0% is satisfied with qualify regulation of lightweight aggregate. The flowability of mortar containing PBLA is increased maximum 16% with increasing mixing ratio of PBLA, however the compressive strength of mortar is decreased maximum 35% with increasing mixing ratio of PBLA.

  • PDF

Mechanical Characteristics of Polymer Concrete made with Recycled Plastic and Concrete Aggregates (폐플라스틱과 재생골재를 이용한 폴리머콘크리트의 역학적 특성)

  • Jo Byung-Wan;Park Seung-Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.324-327
    • /
    • 2004
  • In this paper, fundamental properties of Polymer Concrete made from unsaturated polyester resin based on recycled PET and recycled aggregate(RPC) were investigated. Resins based on recycled PET and recycled aggregate offer the possibility of low source cost for forming useful products, and would also help alleviate an environmental problem and save energy. The results of test for resin contents and recycled aggregate ratio are showed that the strength of RPC increases with resin contents relatively, however beyond a certain resin content the strength does not change appreciably, and the relationship between the compressive strength and aggregate contents at resin $9\%$ has a close correlation linearly whereas there is no correlation between the compressive strength and the flexural strength of RPC with recycled concrete aggregate.

  • PDF

The Mechanical Properties of Lightweight Concrete Using the Lightweight Aggregate Made with Recycled-plastic and high carbon fly ash (폐플라스틱과 고탄소 플라이애쉬 경량골재를 이용한 경량 콘크리트의 역학적 특성)

  • Jo, Byung-Wan;Park, Seung-Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.640-643
    • /
    • 2004
  • Synthetic lightweight aggregates are manufactured with recycled plastic and fly ash with 12 percent carbon. Nominal maximum-size aggregates of 9.5mm were produced with fly ash contents of 0 percent, 35 percent, and 80 percent by total mass of the aggregate. An expanded day lightweight aggregate and a normal-weight aggregate were used as comparison. Mechanical properties of the concrete determined included density, compressive strength, elastic modulus, and splitting tensile strength. Compressive and tensile strengths were lower for the synthetic aggregates; however, comparable fracture properties were obtained. Relatively low compressive modulus of elasticity was found for concretes with the synthetic lightweight aggregate, although high ductility was also obtained. As fly ash content of the synthetic lightweight aggregate increased, all properties of the concrete were improved.

  • PDF

Development of lightweight Fly ash-Plastic Aggregate (석탄회 및 폐플라스틱을 이용한 인공경량합성골재의 개발)

  • Jo Byung Wan;Park Seung Kook;Park Jong Bin;Jansen Daniel C.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.380-383
    • /
    • 2004
  • The coarse and fine aggregates that make up the majority of concrete are resources. But, the raw naturals that make up concrete are our earth's resources and there is not a replenishable stock. Also industrial waste and life waste leaped into a pollution source. Therefore, as construction continue, quarries are exhausted and new sources must be discovered. The purpose of this paper is to investigate an application of recycled coal ash plastics in the construction field. The study examined the physical and mechanical properties of recycled coal ash plastics aggregate. In the results, although the absorption and specific gravity of SLAs increases slightly as the fly ash content increases, the compressive strength and modulus of elastic of concrete made with SLAs remains relatively constant when mortar type and volume fraction are also held constant. These values are always lower than natural-weight aggregate concretes.

  • PDF

Recycling Waste Concrete for Low-Volume Road Pavement (페콘크리트를 재활용한 소도로 포장에 관한 연구)

  • 김광우;류능환;최영규
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.4
    • /
    • pp.137-146
    • /
    • 1996
  • This paper presents the results of field experience from an experimental pavement construction on a low volume road using recycled concrete. The recycled concrete was prepared by replacing a half of coarse aggregate with recycled aggregate. Virgin natural sand was used as fine aggregate together a plasticizer and a fly ash (0.8% and 5% by wt. of cement, respectively). The load bearing capacity of the subbase made of recycled aggregate was acceptable. The length, thickness and width of the pavement were l00m, 20cm and 3m, respectively. From construction experience, it was found that workability and finishability of the recycled concrete mixture were relatively poor, but strengths were satisfactory. Flexural strength, compressive strength and elastic modulus at 28 days were 54Kg/$cm^2$, over 250Kg/$cm^2$, and 220,OOOKg/$cm^2$, respectively. The construction could be performed by hand without much difficulty. The surface was finished smoothly by wet fabric and only minor cracks were found on the surface.

  • PDF