• Title/Summary/Keyword: 평형 계산

Search Result 616, Processing Time 0.021 seconds

Model Development of Surfactant Reuse by Activated Carbons in Soil Washing Process (토양세척 공정에서 활성탄을 이용한 계면활성제 재사용 모델 개발)

  • Ahn, Chi-Kyu;Kim, Young-Mi;Woo, Seung-Han;Park, Jong-Moon
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.1-12
    • /
    • 2006
  • A model describing the distributions of surfactants and HOCs (hydrophobic organic chemicals) in surfactant/HOC/activated carbon systems for surfactant reuse in soil washing process was developed. The model simulation was conducted for the evaluation of the effect of concentrations of surfactant, HOC, or activated carbons. Phenanthrene as a target HOC, Triton X-100 as surfactant and three granular activated carbons with different particle sizes (4-12, 12-20, and 20-40 mesh) were used in the model simulation. The distributions of HOC were significantly affected by surfactant dosages, especially at around the CMC(s). The results of selectivities for phenanthrene were much larger than 1 at various concentrations of surfactants, phenanthrene and activated carbons, which mean that the selective adsorption of phenanthrene by activated carbons is a proper separation method from surfactant solution. The model can be applied for the design of the surfactant reuse process using activated carbons without extra experimental efforts.

Study on CGM-LMS Hybrid Based Adaptive Beam Forming Algorithm for CDMA Uplink Channel (CDMA 상향채널용 CGM-LMS 접목 적응빔형성 알고리듬에 관한 연구)

  • Hong, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.895-904
    • /
    • 2007
  • This paper proposes a robust sub-optimal smart antenna in Code Division Multiple Access (CDMA) basestation. It makes use of the property of the Least Mean Square (LMS) algorithm and the Conjugate Gradient Method (CGM) algorithm for beamforming processes. The weight update takes place at symbol level which follows the PN correlators of receiver module under the assumption that the post correlation desired signal power is far larger than the power of each of the interfering signals. The proposed algorithm is simple and has as low computational load as five times of the number of antenna elements(O(5N)) as a whole per each snapshot. The output Signal to Interference plus Noise Ratio (SINR) of the proposed smart antenna system when the weight vector reaches the steady state has been examined. It has been observed in computer simulations that proposed beamforming algorithm improves the SINR significantly compared to the single antenna case. The convergence property of the weight vector has also been investigated to show that the proposed hybrid algorithm performs better than CGM and LMS during the initial stage of the weight update iteration. The Bit Error Rate (BER) characteristics of the proposed array has also been shown as the processor input Signal to Noise Ratio (SNR) varies.

Preliminary Experimental Result for Clarifying Sr Isotope Behaviour of Water due to Water-Rock Interaction (물-암석반응에 따른 물에서의 Sr동위원소의 거동에 대한 예비실험결과)

  • Lee, Seung-Gu;Kim, Jeong-Chan
    • Economic and Environmental Geology
    • /
    • v.43 no.3
    • /
    • pp.211-222
    • /
    • 2010
  • A batch experiment was carried out to investigate a variation of Sr concentration and $^{87}Sr/^{86}Sr$ ratio in the solution by water-rock interaction. The experiments were conducted at room temperature using two kinds of granites (biotite granite and garnet-bearing granite), de-ionized water. surface water. Water/rock ratio was 1:1. For comparison, we also performed another experiment under water/rock condition of 10:1. Then, the concentration of the cations and anions in the solutions showed severe variation during water/rock interaction. However, after sometime, the $^{87}Sr/^{86}Sr$ ratio of the solution moved to the $^{87}Sr/^{86}Sr$ ratio of the rocks and showed relatively constant value. This suggests that the $^{87}Sr/^{86}Sr$ ratio between water and rock becomes to be stable faster than the elemental equilibration of the element in the solution, and is not affected by interaction condition. Therefore, $^{87}Sr/^{86}Sr$ ratio of the groundwater may be useful in calculating the mixing ratio between different aquifer.

A Study for Shear Deterioration of Reinforced Concrete Beam-Column Joints Failing in Shear after Flexural Yielding of Adjacent Beams (보의 휨항복 후 접합부가 파괴하는 철근콘크리트 보-기둥 접합부의 전단내력 감소에 대한 해석적 연구)

  • Park, Jong-Wook;Yun, Seok-Gwang;Kim, Byoung-Il;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.399-406
    • /
    • 2012
  • Beam-column joints are generally recognized as the critical regions in the moment resisting reinforced concrete (RC) frames subjected to both lateral and vertical loads. As a result of severe lateral load such as seismic loading, the joint region is subjected to horizontal and vertical shear forces whose magnitudes are many times higher than in column and adjacent beam. Consequently, much larger bond and shear stresses are required to sustain these magnified forces. The critical deterioration of potential shear strength in the joint area should not occur until ductile capacity of adjacent beams reach the design demand. In this study, a method was provided to predict the deformability of reinforced concrete beam-column joints failing in shear after the plastic hinges developed at both ends of the adjacent beams. In order to verify the deformability estimated by the proposed method, an experimental study consisting of three joint specimens with varying tensile reinforcement ratios was carried out. The result between the observed and predicted behavior of the joints showed reasonably good agreement.

Topology Design Optimization and Experimental Validation of Heat Conduction Problems (열전도 문제에 관한 위상 최적설계의 실험적 검증)

  • Cha, Song-Hyun;Kim, Hyun-Seok;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.9-18
    • /
    • 2015
  • In this paper, we verify the optimal topology design for heat conduction problems in steady stated which is obtained numerically using the adjoint design sensitivity analysis(DSA) method. In adjoint variable method(AVM), the already factorized system matrix is utilized to obtain the adjoint solution so that its computation cost is trivial for the sensitivity. For the topology optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of the structure and the allowable volume, respectively. For the experimental validation of the optimal topology design, we compare the results with those that have identical volume but designed intuitively using a thermal imaging camera. To manufacture the optimal design, we apply a simple numerical method to convert it into point cloud data and perform CAD modeling using commercial reverse engineering software. Based on the CAD model, we manufacture the optimal topology design by CNC.

Method for Improvement of Reduction Reactivity at High Temperature in a Chemical-Looping Combustor (매체순환식 가스연소기에서 고온 환원반응성 증대 방법)

  • Ryu, Ho-Jung;Park, Sang-Soo;Lee, Dong-Ho;Choi, Won-Kil;Rhee, Young-Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.843-849
    • /
    • 2012
  • When we use NiO based particle as an oxygen carrier in a chemical looping combustion system, the fuel conversion and the $CO_2$ selectivity decreased with increasing reaction temperature within high temperature range (> $900^{\circ}C$) due to the increment of exhaust CO concentration from reduction reactor. To improve reduction reactivity at high temperature, the applicable metal oxide component was selected by calculation of the equilibrium CO concentration of metal oxide components. After that, feasibility of reduction reactivity improvement at high temperature was checked by using solid mixture of the selected metal oxide particle and NiO based oxygen carrier. The reactivity was measured and investigated using batch type fluidized bed. The solid mixture of $Co_3O_4/CoAl_2O_4$(10%) and OCN706-1100(90%) showed higher fuel conversion, higher $CO_2$ selectivity and lower CO concentration than OCN706-1100(100%) cases. Consequently, we could conclude that improvement of reduction reactivity at high temperature range by adding some $Co_3O_4$ based oxygen carrier was feasible.

Effect of Reaction Gases on PFCs Treatment Using Arc Plasma Process (아크 플라즈마를 이용한 과불화합물 처리공정에서 반응가스에 의한 효과)

  • Park, Hyun-Woo;Choi, Sooseok;Park, Dong-Wha
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • The treatment of chemically stable perflourocompounds (PFCs) requires a large amount of energy. An energy efficient arc plasma system has been developed to overcome such disadvantage. $CF_4$, $SF_6$ and $NF_3$ were injected into the plasma torch directly, and net plasma power was estimated from the measurement of thermal efficiency of the system. Effects of net plasma power, waste gas flow rate and additive gases on the destruction and removal efficiency (DRE) of PFCs were examined. The calculation of thermodynamic equilibrium composition was also conducted to compare with experimental results. The average thermal efficiency was ranged from 60 to 66% with increasing waste gas flow rate, while DRE of PFCs was decreased with increasing gas flow rate. On the other hand, DRE of each PFCs was increased with the increasing input power. Maximum DREs of $CF_4$, $SF_6$ and $NF_3$ were 4%, 15% and 90%, respectively, without reaction gas at the fixed input power and waste gas flow rate of 3 kW and 70 L/min. A rapid increase of DRE was found using hydrogen or oxygen additional gases. Hydrogen was more effective than oxygen to decompose PFCs and to control by-products. The major by-product in the arc plasma process with hydrogen was hydrofluoric acid that is easy to be removed by a wet scrubber. DREs of $CF_4$, $SF_6$ and $NF_3$ were 25%, 39% and 99%, respectively, using hydrogen additional gas at the waste gas flow rate of 100 L/min and the input power of 3 kW.

Adsorption Characteristics and Parameters of Acid Black and Quinoline Yellow by Activated Carbon (활성탄에 의한 Acid Black과 Quinoline Yellow의 흡착특성 및 파라미터)

  • Yi, Kyung Ho;Hwang, Eun Jin;Baek, Woo Seung;Lee, Jong-Jib;Dong, Jong-In
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.186-195
    • /
    • 2020
  • The isothermal adsorption, dynamic, and thermodynamic parameters of Acid black (AB) and Quinoline yellow (QY) adsorption by activated carbon were investigated using the initial concentration, contact time, temperature, and pH of the dyes as adsorption parameters. The adsorption equilibrium data fits the Freundlich isothermal adsorption model, and the calculated Freundlich separation factor values found that activated carbon can effectively remove AB and QY. Comparing the kinetic data showed that the pseudo second order model was within 10% error in the adsorption process. The intraparticle diffusion equation results were divided into two straight lines. Since the slope of the intraparticle diffusion line was smaller than the slope of the boundary layer diffusion line, it was confirmed that intraparticle diffusion was the rate-controlling step. The thermodynamic experiments indicated that the activation energies of AB and QY were 19.87 kJ mol-1 and 14.17 kJ mol-1, which corresponded with the physical adsorption process (5 ~ 40 kJ mol-1). The adsorption reaction was spontaneous because the free energy change in the adsorption of AB and QY by activated carbon was negative from 298 to 318 K. As the temperature increased, the free energy value decreased resulting in higher spontaneity. Adsorption of AB and QY by activated carbon showed the highest adsorption removal rate at pH 3 due to the effect of anions generated by dissociation. The adsorption mechanism was electrostatic attraction.

Study on free and bond glycerines in Biodiesel from PKO(Palm Kernel Oil) and coconut oil (PKO 및 코코넛유래 바이오디젤 중 글리세린함량 분석 방법 개선 연구)

  • Lee, Don-Min;Park, Chun-Kyu;Ha, Jong-Han;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.348-361
    • /
    • 2015
  • To reduce the effects of greenhouse gas (GHG) emissions, the government has announced the special platform of technologies as parts of an effort to minimize global climate change, and the government distributed biodiesel since 2006 as the further efforts. Although there are some debates about some quality specifications and unbalanced of source (44% from palm oil), more than 400kton/year of biodiesel was produced in 2013. Moreover the amounts will be increased when the RFS is activated. To solve the unbalanced situation and to achieve the diversity of feeds, it is essential that many researches should be considered. Especially, free and bond glycerines are one of the important properties seriously affected to the combustion system in vehicle & cold properties. Previous method (KS M 2412) couldn't cover the biodiesel derived from lauric oil($C_{12:0}$) such as PKO (Palm Kernel Oil), Coconut oil because those compositions are lighter than other conventional biodiesel sources. In this study, we review the existed method and figure out the factors should improve to analysis the glycerine from PKO and Coconut oil biodiesel. Modifying the analysis conditions to enhance the resolution and change the internal standards to avoid the overlapped- peaks between Capric acid ME ($C_{10:0}$) and standard#1(1,2,4-butantriol). From this revised method, we could solve the restrictions of previous methods. And check the possibility of new method to analyze the glycerine in biodiesel regardless of sources.

Study on the Adsorption of Antibiotics Trimethoprim in Aqueous Solution by Activated Carbon Prepared from Waste Citrus Peel Using Box-Behnken Design (박스-벤켄 설계법을 이용한 폐감귤박 활성탄에 의한 수용액 중의 항생제 Trimethoprim의 흡착 연구)

  • Lee, Min-Gyu;Kam, Sang-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.568-576
    • /
    • 2018
  • In order to investigate the adsorption characteristics of the antibiotics trimethoprim (TMP) by activated carbon (WCAC) prepared from waste citrus peel, the effects of operating parameters on the TMP adsorption were investigated by using a response surface methodology (RSM). Batch experiments were carried out according to a four-factor Box-Behnken experimental design with four input parameters : concentration ($X_1$: 50-150 mg/L), pH ($X_2$: 4-10), temperature ($X_3$: 293-323 K), adsorbent dose ($X_4$: 0.05-0.15 g). The experimental data were fitted to a second-order polynomial equation by the multiple regression analysis and examined using statistical methods. The significance of the independent variables and their interactions was assessed by ANOVA and t-test statistical techniques. Statistical results showed that concentration of TMP was the most effective parameter in comparison with others. The adsorption process can be well described by the pseudo-second order kinetic model. The experimental data of isotherm followed the Langmuir isotherm model. The maximum adsorption amount of TMP by WCAC calculated from the Langmuir isotherm model was 144.9 mg/g at 293 K.