DOI QR코드

DOI QR Code

Method for Improvement of Reduction Reactivity at High Temperature in a Chemical-Looping Combustor

매체순환식 가스연소기에서 고온 환원반응성 증대 방법

  • Ryu, Ho-Jung (Greenhouse Gas Center, Korea Institute of Energy Research) ;
  • Park, Sang-Soo (Greenhouse Gas Center, Korea Institute of Energy Research) ;
  • Lee, Dong-Ho (Greenhouse Gas Center, Korea Institute of Energy Research) ;
  • Choi, Won-Kil (Greenhouse Gas Center, Korea Institute of Energy Research) ;
  • Rhee, Young-Woo (Graduate School of Green Energy Technology, Chungnam National University)
  • 류호정 (한국에너지기술연구원 온실가스연구단) ;
  • 박상수 (한국에너지기술연구원 온실가스연구단) ;
  • 이동호 (한국에너지기술연구원 온실가스연구단) ;
  • 최원길 (한국에너지기술연구원 온실가스연구단) ;
  • 이영우 (충남대학교 녹색에너지기술전문대학원)
  • Received : 2012.02.16
  • Accepted : 2012.06.11
  • Published : 2012.10.01

Abstract

When we use NiO based particle as an oxygen carrier in a chemical looping combustion system, the fuel conversion and the $CO_2$ selectivity decreased with increasing reaction temperature within high temperature range (> $900^{\circ}C$) due to the increment of exhaust CO concentration from reduction reactor. To improve reduction reactivity at high temperature, the applicable metal oxide component was selected by calculation of the equilibrium CO concentration of metal oxide components. After that, feasibility of reduction reactivity improvement at high temperature was checked by using solid mixture of the selected metal oxide particle and NiO based oxygen carrier. The reactivity was measured and investigated using batch type fluidized bed. The solid mixture of $Co_3O_4/CoAl_2O_4$(10%) and OCN706-1100(90%) showed higher fuel conversion, higher $CO_2$ selectivity and lower CO concentration than OCN706-1100(100%) cases. Consequently, we could conclude that improvement of reduction reactivity at high temperature range by adding some $Co_3O_4$ based oxygen carrier was feasible.

매체순환식 가스연소기 산소공여입자로 NiO 계열 산소공여입자를 사용할 경우 고온 조건(> $900^{\circ}C$)에서 온도가 증가함에 따라 환원반응 배출기체 중 CO 농도가 증가하게 되며, 이에 의해 연료전환율과 $CO_2$ 선택도가 감소하게 된다. 이러한 고온 환원반응성 저하를 개선하기 위한 방법으로 매체순환 가스연소기에 적용 가능한 금속산화물들에 대해 온도변화에 따른 평형 CO 농도를 계산 및 비교하여 반응성 개선이 가능한 금속산화물을 선정하였다. 선정된 금속산화물을 NiO 계열 산소공여입자와 물리적으로 혼합하는 방법을 적용하여 고온 환원반응성 개선이 가능한지를 회분식 유동층 실험장치를 이용하여 측정 및 해석하였다. $900{\sim}1000^{\circ}C$ 범위에서 기존 NiO 계열 입자(OCN706-1100) 만을 사용한 경우에 비해 $Co_3O_4$ 계열 입자($Co_3O_4/CoAl_2O_4$)를 10% 혼합한 경우가 연료전환율 및 $CO_2$ 선택도가 높게 나타났으며 환원반응 배출기체 중 CO의 농도가 감소하는 경향을 나타내어 $Co_3O_4$ 계열 산소공여입자를 함께 사용하는 방법으로 고온 환원반응성 개선이 가능함을 확인할 수 있었다.

Keywords

References

  1. Figueroa, J. D., Fout, T., Plasynski, S., Mcilvried, H. and Srivasrava, R. D., "Advances in $CO_{2}$ Capture Technology-The U.S. Department of Energy's Carbon Sequestration Program," Int. J. of Greenhouse Gas Controls, 2, 9-20(2008). https://doi.org/10.1016/S1750-5836(07)00094-1
  2. Ryu, H. J., "$CO_{2}$-NOx Free Chemical-Looping Combustion Technology," KOSEN report, available on http://www.kosen21.org (2003).
  3. Ryu, H. J., Kim, Y. J., Park, Y. S. and Park, M. H., "Reaction Characteristic of Coal and Oxygen Carrier Particle in a Thermogravimetric Analyzer," Trans. of the Korean Hydrogen and New Energy Society, 22(2), 213-222(2011).
  4. Ryu, H. J., Hyun, J. S., Kim, Y. J., Park, Y. S. and Park, M. H., "Chemical Looping Combustion Characteristics of Coal and Char in a Batch Type Fluidized Bed Reactor," Trans. of the Korean Hydrogen and New Energy Society, 22(6), 884-894(2011).
  5. Akai, M., Kagojo, T. and Inoue, M., "Performance Evaluation of Fossil Power Plant with $CO_{2}$ Recovery and Sequestering System," Energy Convers. Mgmt, 36(6-9), 801-804(1995). https://doi.org/10.1016/0196-8904(95)00125-W
  6. Wolf, J., Anheden, M. and Yan, J., "Comparison of Nickel- and Iron-based Oxygen Carriers in Chemical-Looping Combustion for $CO_{2}$ Capture in Power Generation," Fuel, 84, 993-1006(2005). https://doi.org/10.1016/j.fuel.2004.12.016
  7. Ishida, M. and Jin, H., "A New Advanced Power-Generation System Using Chemical-Looping Combustion," Energy, 19(4), 415-422(1994). https://doi.org/10.1016/0360-5442(94)90120-1
  8. Ryu, H. J., Jin, G. T., Jo, S. H. and Bae, D. H., "Comparison of Operating Conditions for Natural Gas Combustion and Syngas Combustion in a 50 kWth Chemical-Looping Combustor," Theor. Appl. Chem. Eng., 12(2), 259(2006).
  9. Park, S. S., Lee, D. H., Choi, W. K., Ryu, H. J. and Rhee, Y. W., "Syngas Combustion Characteristics of Oxygen Carrier Particle in a Pressurized Fluidized Bed Reactor," Trans. of the Korean Hydrogen and New Energy Society, 23(1), 83-92(2012). https://doi.org/10.7316/khnes.2012.23.1.083
  10. Linderholm, C., Mattisson, T. and Lyngfelt, A., "Long-term Integrity Testing of Spray-dried Particles in a 10 kW Chemical-looping Combustor Using Natural Gas as Fuel," Fuel, 88, 2083-2096 (2009). https://doi.org/10.1016/j.fuel.2008.12.018
  11. Linderholm, C., Jerndal, E., Mattisson, T. and Lyngfelt, A., "Investigation of NiO-based Mixed Oxides in a 300-W Chemical- Looping Combustor," Chem. Eng. Res. Des., 88, 661-672 (2010). https://doi.org/10.1016/j.cherd.2009.11.004
  12. Ryu, H. J. and Jin, G. T., "Criteria for Selection of Metal Component in Oxygen Carrier Particles for Chemical-looping Combustor," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 42(5), 588-597(2004).
  13. Baek, J. I., Ryu, J. H., Lee, J. B., Eom, T. H., Kim, K. S., Yang, S. R. and Ryu, C. K., "Highly Attrition Resistant Oxygen Carrier For Chemical Looping Combustion," Energy Procedia, 4, 349-355(2011). https://doi.org/10.1016/j.egypro.2011.01.061
  14. Ryu, H. J., Kim, K. S., Park, Y. S. and Park, M. H., "Natural Gas Combustion Characteristics of Mass Produced Oxygen Carrier Particles for Chemical-looping Combustor In a Batch Type Fluidized Bed Reactor," Trans. of the Korean Hydrogen and New Energy Society, 20(2), 151-160(2009).
  15. Ryu, H. J. and Jin, G. T., "Reactivity and Attrition Resistance of Three Oxygen Carrier Particles for Chemical-looping Combustor," Trans. of the Korean Hydrogen and New Energy Society, 15(3), 208-219(2004).
  16. Ryu, H. J., Shun, D., Bae, D. H. and Park, M. H., "Syngas Combution Characteristics of Four Oxygen Carrier Particles for Chemical- looping Combustion in a Batch Fluidized Bed Reactor," Korean J. Chem. Eng., 26(2), 523-527(2009). https://doi.org/10.1007/s11814-009-0089-7
  17. Han, G. B., Park, N. K., Ryu, S. O. and Lee, T. J., "The Reactivity for the $SO_{2}$ Reduction with CO and $H_{2}$ over Sn-Zr Based Catalysts," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 44(4), 356-362(2006).

Cited by

  1. Direct Combustion Characteristics of Coal by Oxygen Carrier vol.25, pp.1, 2014, https://doi.org/10.7316/KHNES.2014.25.1.087
  2. Conceptual Design and Feasibility Study on 0.5 MWth Pressurized Chemical Looping Combustor vol.27, pp.2, 2016, https://doi.org/10.7316/KHNES.2016.27.2.201
  3. Effects of Operating Variables on Separation Rate and Separation Efficiency in Ash Separator for Solid Fuel Chemical Looping Combustor vol.27, pp.2, 2016, https://doi.org/10.7316/KHNES.2016.27.2.211
  4. Reduction Characteristics of Oxygen Carriers in a Pressurized Bubbling Fluidized Bed vol.27, pp.5, 2016, https://doi.org/10.7316/KHNES.2016.27.5.589
  5. 케미컬루핑 연소를 위한 산소전달입자의 최소유동화속도 및 고속유동층 전이유속에 미치는 압력의 영향 vol.28, pp.1, 2012, https://doi.org/10.7316/khnes.2017.28.1.85
  6. 케미컬루핑 연소시스템을 위한 두 가지 산소전달입자들의 고체순환 특성 vol.29, pp.4, 2012, https://doi.org/10.7316/khnes.2018.29.4.393
  7. 0.5 MWth 케미컬루핑 연소 시스템 적용을 위한 신규 산소전달입자의 고온·고압 반응 특성 vol.29, pp.5, 2012, https://doi.org/10.7316/khnes.2018.29.5.473
  8. 0.5 MWth 급 케미컬루핑 연소시스템에서 대량생산 입자의 고체순환 특성 및 반응 특성 vol.30, pp.2, 2012, https://doi.org/10.7316/khnes.2019.30.2.170