Today, many services and products that used to be only provided on offline have been being provided on the web according to the improvement of computing environment and the activation of web usage. These web-based services and products tend to be provided to customer by customer's preferences. This paradigm that considers customer's opinions and features in selecting is called personalization. The related research field is a recommendation. And this recommendation is performed by recommender system. Generally the recommendation is made from the preferences and tastes of customers. And recommender system provides this recommendation to user. However, the recommendation techniques have a couple of problems; they do not provide suitable recommendation to new users and also are limited to computing space that they generate recommendations which is dependent on ratings of products by users. Those problems has gathered some continuous interest from the recommendation field. In the case of new users, so similar users can't be classified because in the case of new users there is no rating created by new users. The problem of the limitation of the recommendation space is not easy to access because it is related to moneywise that the cost will be increasing rapidly when there is an addition to the dimension of recommendation. Therefore, I propose the solution of the recommendation problem of new user and the usage of item quality as weight to improve the accuracy of recommendation in this paper.
Drop-out issue is one of the challenges of cyber university. There are about 130,000 students enrolled in cyber universities, but the dropout rate is also very high. To lower the dropout rate, cyber universities invest heavily in learning analytics. Some cyber universities analyze the possibility of dropout and actively support students who are more likely to drop out. The purpose of this paper is to identify the learning data affecting the dropout prediction index. As a result of the analysis, it is confirmed that number of lessons(progress), credits, achievement and leave of absence have a significant effect on dropout rate. It is necessary to increase the accuracy of the prediction model through post-test on the student dropout prediction index.
This study deals with the prediction of the total number of movie audiences as a measure for the box office. Prediction is performed by classification techniques of data mining such as decision tree, multilayer perceptron(MLP) neural network model, multinomial logit model, and support vector machine over time such as before movie release, release day, after release one week, and after release two weeks. Predictors used are: online word-of-mouth(OWOM) variables such as the portal movie rating, the number of the portal movie rater, and blog; in addition, other variables include showing the inherent properties of the film (such as nationality, grade, release month, release season, directors, actors, distributors, the number of audiences, and screens). When using 10-fold cross validation technique, the accuracy of the neural network model showed more than 90 % higher predictability before movie release. In addition, it can be seen that the accuracy of the prediction increases by adding estimates of the final OWOM variables as predictors.
This study analyzed the relationship between key film and a box office record success factors based on movies released in the first quarter of 2013 in Korea. An over-fitting problem can happen if there are too many explanatory variables inserted to regression model; in addition, there is a risk that the estimator is instable when there is multi-collinearity among the explanatory variables. For this reason, optimal variable selection based on high explanatory variables in box-office performance is of importance. Among the numerous ways to select variables, LASSO estimation applied by a generalized linear model has the smallest prediction error that can efficiently and quickly find variables with the highest explanatory power to box-office performance in order.
One of the most commonly used methods of web recommendation techniques is collaborative filtering. Many studies on collaborative filtering have suggested ways to improve accuracy. This study proposes a method of movie recommendation using Word2Vec and an ensemble convolutional neural networks. First, in the user, movie, and rating information, construct the user sentences and movie sentences. It inputs user sentences and movie sentences into Word2Vec to obtain user vectors and movie vectors. User vectors are entered into user convolution model and movie vectors are input to movie convolution model. The user and the movie convolution models are linked to a fully connected neural network model. Finally, the output layer of the fully connected neural network outputs forecasts of user movie ratings. Experimentation results showed that the accuracy of the technique proposed in this study accuracy of conventional collaborative filtering techniques was improved compared to those of conventional collaborative filtering technique and the technique using Word2Vec and deep neural networks proposed in a similar study.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.5
/
pp.1-8
/
2023
Cross-domain recommendation is a method that shares related user information data and item data in different domains. It is mainly used in online shopping malls with many users or multimedia service contents, such as YouTube or Netflix. Through K-means clustering, embeddings are created by performing clustering based on user data and ratings. After learning the result through a transformer network, user satisfaction is predicted. Then, items suitable for the user are recommended using a transformer-based recommendation model. Through this study, it was shown through experiments that recommendations can predict cold-start problems at a lesser time cost and increase user satisfaction.
신용평점을 위한 부도예측의 분류 문제를 다루는데 있어서 통계적 판별분석 및 인공신경망 및 유전자알고리즘 등을 이용한 데이터 마이닝의 방법들이 일반적으로 고려되어왔다. 이 연구에서는 수리계획법을 응용하여 classification gap을 고려한 이단계 수리계획 접근방법을 신용평가에 적용하는 방법론을 제안하여 수리계획법을 통한 신용평가모형 구축의 가능성을 제시한다. 1단계에서는 선형계획법을 이용해서 대출 신청자에게 대출을 허가할 것 인지의 여부를 결정하게 되는 대출 심사 filtering으로의 적용단계이고, 2단계에서는 정수계획법을 이용하여 오분류 비용이 최소가 되도록 하는 판별점수를 찾는 과정으로 모형을 구성한다. 개인 대출 신청자의 데이터(German Credit Data)에 대하여 피셔의 선형 판별함수, 로지스틱 회귀모형 및 기존의 수리계획 기법들과의 비교를 통해서 제안된 모델의 성능을 평가한다. 이단계 수리계획 접근법의 평가 결과를 통하여 신용평가모형에의 적용가능성을 기존 통계적인 접근방법 및 수리계획 접근법과 비교하여 제시하고 있다.
Proceedings of the Korean Society for Quality Management Conference
/
2010.04a
/
pp.447-447
/
2010
조직이나 기업에서 높은 수준의 직무 성과는 뛰어난 지적 능력과 더불어 다른 요소들의 영향에 의해 결정된다고 광범위하게 인식되고 있다. 따라서 인사선발시 인지적인 능력뿐만이 아니라 성격과 같은 비인지적 능력을 평가하는 시도가 활발히 이루어지고 있다. 본 연구는 이를 실증적으로 검증하고자 수행되었다. 즉, 본 연구에서는 서울지역에서 재학 중인 대학생 (n=260) 을 대상으로 하여 인지적 능력은 입학성적으로, 비인적 능력은 Big Five 성격 특성으로, 직무성과는 학업성과(예, 학업평점, 대학 및 학과에 대한 만족도, 동아리 활동, 등) 로 각각 측정하여 이들의 관계성을 살펴보았다. 연구 결과, 인지적 능력과 더불어 Big Five 성격 특성 중 성실성과 개방성이 다양한 학업성과와 상관관계를 보여주었다. 본 연구는 추가적으로, 학업성과 중 동아리 활동이 대학생활의 만족도와 상관관계가 있음을 보여주고 있다. 이러한 결과는 인사선발 과정에서 지원자의 잠재적 직무성과를 예측할 때 지적 능력 같은 인지적 측면뿐만이 아니라 성격과 같은 비인지적 측면을 동시에 고려해야 한다는 실무적 시사점을 제시하고 있다.
소비자의 선호도 및 여론을 정량적인 방법으로 분석하기 위해 비정형 데이터의 분석은 필수적인 요소가 되고 있다. 하지만 비정형 데이터는 언어의 구조 및 모호성 등으로 인해 분석하기 어려운 형태이다. 따라서 본 연구는 최근 각광받고 있는 인공신경망, 특히 그 중에서도 순환 신경망의 한 모델인 Deep LSTM을 이용하여 비정형 데이터를 분석하고 이를 활용하여 어순 및 어감 등의 언어의 구조적 문제에도 효과적인 정략적 모델을 설계하여 학습하고 이를 기존의 인공신경망 모델과 비교 분석하고자 한다.
This study was to identify the factors influencing college life adjustment and sub-scales of nursing students. Self- report questionnaire surveys were conducted toward 282 freshman nursing students to measure college life adjustment, psychological well-being, emotional intelligence, and self-efficacy. Data were collected from September 22 through October 7, 2016. This study was analyzed using SPSS Win 18.0. The average mean of college life adjustment was 3.36 and academic activity was the highest, followed by individual psychology, social experience, Interpersonal relationship, and career preparation. A correlation of psychological well-being, emotional intelligence, self-efficacy, college life adjustment and sub-scales showed positive correlation. The strongest predictor of college life adjustment was a self-efficacy. And sub-scales, the strongest predictor of academic activity was academic achievement, career preparation was self-efficacy, individual psychology and social experience was emotional intelligence, and Interpersonal relationship was psychological well-being. An intervention program which includes these significant variables of subjects is essential to improve of college life adjustment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.