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I. Introduction

Consummer credit is granted by various other
lending institutions including banks, building
societies, retailers and mail order companies
and is a sector of the economy that has seen
rapidly. Traditional methods of
deciding whether to grant credit to a
particular individual use human judgment of
the nisk of default, based on the experience of

grown

previous  decisions. However, economic

pressures resulting from increased demand for
credit,
competition and the emergence of new
computer technology, have led to the
development of sophisticated statistical models
to aid the credit granting decision.

Credit scoring is the name used to describe

allied with greater commercial

the process of determining how likely an
applicant is to default with repayments.
Statistical models which give estimates of
these default probabilities are referred to as
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<Figure 1> Graphical illustration of credit scoring

scorecards or classifiers. Standard methods
used for developing scorecards include
discriminant  analysis, logistic regression,
decision trees and mathematical programming.
An accept/reject decision can then be taken on
a particular applicant. by comparing = the
estimated good/bad probability with a suitable
threshold. Figure 1 represents graphical
illustration of credit scoring.

Credit scoring has two types of decisions
that should be made to lend to applicants. The
first type of decision is whether they grant
credit to a new applicant. Techniques that ad
this decision are called application scoring.
The second one is how to deal with existing
customers. If an existing customer wants to
increase his credit limit, should the firm agree
to that? If the customer starts to fall behind in
his repayments, what actions should the firm
take? The tools that help with these decisions
are called behavioral scoring. This study will

focus on the classification of applicants into

good or bad risk classes (application scoring)
based on  their initial

characteristics.

application

Credit - scoring is one .of classification
problems whose objective is to predict the
group membership of a new observation by
using measured values on a set of relevant
variables or attributes. Fisher's linear
discriminant function and the quadratic
discriminant function have long been the
standard  techniques for  establishing
discriminant rules in classification analysis
(Ragsdale and Stam, 1991). However, both of
these discriminant functions are based on the
assumption of muiltivariate normality of the
measured variables (attributes). In many
involving real data, these

are seriously wviolated, for

situations
assumptions
instance, in the case of binary variables and
when outliers are present in the data set.

In credit scoring field, the modem data
mining techniques, which have made a



significant contribution to the field of
information science (Chen & Huang, 2003),
can be adopted to construct the credit scoring
models. Practitioners and researchers have
developed a varety of traditional statistical
models and datamining tools for credit
scoring, which involve linear discriminant
models, logistic regression models, k-nearest
neighbor models, decision tree models, neural
network models, and genetic programming
models.

Desai et al. (1996) investigated neural
networks, linear discriminant analysis and
logistic regression for scoring credit decision.
They concluded that neural
outperform linear discriminant analysis in

classifying loan applicants into good and bad

networks

credits, and logistic regression is comparable
to neural networks. West (2000) investigated
the credit scoring accuracy of several neural
networks. Results were benchmarked against
traditional statistical methods such as linear
discriminant  analysis, logistic regression,
and decision trees.
Malhotra and Malhotra (2002) applied
neuro-fuzzy models to analyze consumer loan
applications and compared the advantages of
traditional
statistical techniques in credit-risk evaluation.
Hoffmann, Baesens, Martens, Put, and
Vanthienen (2002) applied a genetic fuzzy and

k-—nearest neighbor

neuro—fuzzy  systems  over

a neuro—fuzzy classifier for credit scoring.

Baesens et al.  (2003)  benchmarked
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state-of-the-art classification algorthms for
credit scoring.

Recently, researchers have proposed the
hybrid data mining approach in the design of
an effective credit scoring model. Hsieh (2006)
proposed a hybrid system based on clustering
and neural network techniques; Lee and Chen
(2005) proposed a two-stage hybrid modeling
procedure with artificial neural networks and
multivariate adaptive regression splines. Lee,
Chiy, Iu, and Chen (2002) integrated the
backpropagation networks ~ with
traditional discriminant analysis approach.

neural

Chen and Huang (2003) present a work
involving two interesting credit analysis
problems and resolve them by applying neural
networks and genetic algorithms techniques.

As the useful non-parametric techniques, a
number of researchers have introduced and
investigated mathematical programming (MP)
formulations to solve the classification
problem, resulting in a number of
non-parametric techniques which have been
shown to perform well under various
conditions (Bajgier and Hill, 1982; Freed and
Glover, 198la, b, 1986a; Gehrlein, 1986
Joachimsthaler and Stam 1988; Koehler and
Erenguc, 1990, Stam and Joachimsthaler,
1990). The most common mathematical
programming  approaches suggested in the
literature are the MSD (minimize the sum of
the deviations), the MMD (minimize the

maximum deviation), and hybrid models
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which seek to minimize external deviations
internal deviations.
Mixed-integer programming (MIP) models
have also been suggested to minimize directly
the number of misclassified observations
(Koehler and FErenguc, 1990; Stam and
Joachimsthaler, 1990).

Mathematical programming methods have

and maximize

certain advantages over the parametric
methods (Erenguc and Koehler,1990):

(1) Mathematical programming methods are
free from parametric assumptions;

(2) Varied objectives and more complex
problem  formulations
accornmodated;

(3) Individual weights to each of the data
points and misclassification costs, either
fixed or depending on the extent of
misclassification, are easily incorporated;

(4) Some mathermatical programiming methods,
especially linear programming, lend
themselves to sensitivity analysis.

Although the classification performance of

these methods is promising, several
researchers have pointed out that a number of
these mathematical programming formulations
suffer  from  theoretical  shortcomings
(Markowski and Markowski, 1985; Freed and
Glover, 1986b; Koehler, 1989a). These include
unacceptable solutions (if a discriminant
function of zeros results, in which case all
observations will be classified in the same
group), improper solutions (if all observations

are easily

fall exactly on the separating hyperplane), and
unbounded solutions (f the objective function
can be improved without limit). The outcomes
can lead to useless or erroneous results and
interpretation (Koehler, 1989b). Of course, the
MIP formulations also can require extensive
computational resources that may be
prohibitive for large data sets.

Therefore, it is necessary for mathematical
programming formulations to overcome
unacceptable solution, improper solution and
computational requirement. This provides the
authors with the motivation to propose a
mathematical programming
approach which explicitly considers the

two—phase

classification gap associated with a gap
constraint formulation. This classification gap
can be viewed as a fuzzy area between the
groups which requires special consideration in
establishing the final classification rule. The
effectiveness of two—phase approach is
compared with Fisher's linear discriminant
function (FLDF), logistic regression, MSD and
MIP using empirical data sets.

The reminder of this study is organized as
follows. In Chapter 2, literature review of
mathematical programming  approaches
presents. Considerations of the existing
mathematical programming approaches and
mathematical formulation of the proposed
mathematical  programming
approach are represented in Chapter 3.
Chapter

two—phase

4 presents the results of



computational experiments in order to show
the performance of this approach and shows
that two-phase mathematical programming
outperforms  other

of the

classification performance. Finally, some

approach rivals or

approaches in terms relative

concluding remarks are discussed in Chapter
5.

II. Literature review

Among the mathematical programming
approaches, the MSD model and the MIP
model have been most widely used for
discriminant problem in the literature. Typical
models of these models are introduced.

2.1 MSD model

One of the first and most widely used
mathematical programming models of the
discriminant problem is the MSD (minimize
the sum of the deviations) model (Freed and
Glover, 1981b). In general, the MSD model
tries to find a hyperplane that minimizes the

weighted sum of exterior deviations. Suppose

there are "« observations in group ¥ (k=12)
on P independent (measured) variables (attributes).
The MSD model is given in (P1):

1) Min z=1'd, +1'd, (1)
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subject to

Xw+d, >cl, ©)
X,w—d, <cl, ®)
d]adz Z O (4)
€ W ynrestricted, 5)

, where Xiis an (%*P) matrix of
observations in groupk , thedeare (mx1)
vectors of deviational variables (k=12) 1 is
an appropriately dimensioned column vector of
ones, 0 is an appropriately dimensioned
column vector of zeros, Wis a (2x1) vector of
attribute weights, and € is a scalar variable.
In the following discussion, let Xwrepresent a
(1xP) vector corresponding tol th observation
in group * (e, thelth row of X«), and let
dyrepresent the th component of 9x. The
value of the variable 9« represents the extent
to which observation X« is misclassified. For
instance, if observation? in group 1 is
correctly classified, then Xiw>¢l, in (2) and
the objective in (1) of minimizing the sum of
the undesirable deviations implies 9u =9,
Similarly, a correctly classified observation
belong to group 2 will satisfy X.w=¢cl, in (3),
and the corresponding deviational variable 92
will equal zero by (1). However, if observation
i in group 1 is misclassified then Xw<cl,

which, by (2), forces 42 to assume a strictly
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positive value that is penalized in (1)
Likewise, (3) ensure that 9x>%for any
observation ¥ in group 2 that is misclassified
(ie,9: >0 if and only if X,W>cl,),

The formulation (P1) has considerably
intuitive appeal, as its optimal solution (W's¢")
identifies a hyperplane in R* which minimizes
the extent of misclassification as measured by
the sum of the undesirable deviations from the
separating hyperplane for all ohservations. It
is important to note that minimizing the extent
of misclassification is not necessarily the
same as minimizing the number of
misclassification observations. For instance,
the MSD model makes no preferential
distinction between solutions with z=100 and
d,=(0,0,0,100) o d,=(25',25,25,25)’ even
though the first

misclassification and the second has four.

soludon has one

2.2 MIP model

In general, mixed integer programming
MP) models try to find a separating
hyperplane that minimizes the number of
misclassifications. The MIP model that was
suggested by several authors (Freed and
Glover, 1986b; Glover, 1988) is given in (P2):

P2) Min z=1'I, +1'l, ®)
subject to

Xw+M-1, >cl, 7
X,w-M-1,<cl, ®)
C W ynrestricted, )

, where M is a large positive number, LI,
are zero-one vectors and other notations are
same as those of (PL). Let L& represent the i
th component of L. The value of the
deviational variable I+ represents the extent
to which observation X« is misclassified. For
instance, if observation! in group 1 is
correctly classified, then Xw>¢l, in (7) and
the objective in (6) of minimizing the number
of “the
Similarly, a correctly classified observation
which belongs to group 2 will satisfy X,w=cl,
in (8), and the corresponding deviational
variable /» will equal to zero by (7).

misclassifications  implies’u =9,

However, if observation I in group 1 is
misclassified then Xiw<cl, which, by (8),
forces 1 to assume a strictly positive value
that is penalized in (1). Likewise, (3) ensures
that Z»=1 for any observation i in group 2
that is misclassified Ge,f»=! if and only if
X,w>cl,),

As mentioned previously, various MIP
models have been proposed for directly
minimizing the number of misclassifications in

the training sample (Koehler and Erenguc,
1990, Stam and Joachimsthaler, 1990). Such



methods are inherently insensitive to outliers,
since all misclassified observations are
weighted equally, irrespective of their distance
from the separating hyperplane.

In Chapter 3, this study refers to a number
of problems/concerns that researchers should
consider in the study of mathematical
programming approaches for determining
linear discriminant functions. And two-phase
mathematical programming approach will be
proposed to solve these problems to some
degree  and outperform  the

approaches.

existing

M. Mathematical formulations
and solution approach

3.1 Considerations for mathematical
programming approaches

The greater part of the literature associated
with mathematical programming methods for
determining linear discriminant functions falls
into two groups: those that give empirical
comparisons of the performance of one or
more models versus parametric methods and
those that point out problems in earlier
models. In the following, a number of
problems and issues including unacceptable
solution, gaps and computational efforts
(efficiency) that have appeared or been raised
in the literature are explained.

Consumer Credit Scoring Model with Two-Stage Mathematical Programming

3.1.1 Unacceptable solution
A system of equation of the form

X,w2cl,
X,w<cl,

has a trivial solution of (W=0,¢=0) which
gives an unacceptable discrimination - every
observation will be classified both groups 1
and 2. However, LP formulations may
generate this type of solution (Koehler, 19894,
b).
Many techniques have been suggested to
prevent a zero solution. These include:
(1) Adding a linear constraint to prevent
w=0,
(2) Adding a non-convex constraint to
prevent w=0,
(3) Translating the data to prevent w=0
and
(4) Adding a redundant constraint to
prevent w=0,
All of the above except method (4) have
side effects.

A linear equality constraint used to prevent
a zero solution takes the form of a'w=1,
where a is any P*! vector. This certainly
prevents a zero solution but also prevents any
W in the set {wa'w=0}, This overkill is
potentially detrimmental. So, another normalization
constraint is required to solve troublesome
above mentioned.

A typical non—convex constraint is w'w>0,
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This constraint only restricts w=90so that it is
superior to any type of linear constraint to
prevent a zero solution. If (W:¢) gives »
misclassifications, so does (4W.4¢) for any
A>0._ Since (W:¢) gives the same hyperplane
as (AW4c) one can simplify the above to
w'w=1 without any loss of generality. So,
although w'w=1 restricts w=0, it dose not
restrict consideration of any hyperplanes.
(This is not the case with linear constraints.
If W is non-zero and is in{wa'w=0} any
scalar multiple of W is also in{wa'w=0}.
Hence, a linear constraint with non-zero w
necessarily restricts consideration of some
hyperplanes.)

A constraint similar to ww=1 is [W[=1

where M denotes a norm of w. While both
type of constraints prevent a w=0 solution,
they change a linear program into a
non-convex programming problem, and these
very hard to solve.

Constraints above mentioned are non-linear
normalization constraints or detrimental to
solve classification problem, so appropriate
linear normalization constraints are included in
the proposed two-phase mathematical
programming approach to solve unacceptable
solution problem.

3.1.2 Gaps

LP formulations cannot directly handle
strict inequality constraints. As seen already,

one really wants a solution to

X,w>cl,
X,w<cl,

Most approaches have relaxed the > to 2.
Gehlein (1986) and Glover (1991) replaced the
constraint by Xiw>(c+e1 where £>0and
small. They introduced a gap where
observations may fall and be unclassified
Because of existence of unclassified
observations, classification gap is considered
as undesirable in the literature. However, this
study does not view classification as
undesirable, but merely as an area where
additional analysis is required to determine the
appropriate classification rule.

3.1.3 Computational effort

Real-world linear discriminant problems
typically have a large number of observations
(n=n+n,) and a small number of attributes
(P is usually relatively small). As such, many
of linear programming formulations typically
have a large number of constraints and a
small number of variables (The dual has the
opposite properties and accordingly might be
the preferred problem to solve.) In either case,
polynomial methods exist to solve these
problems.

When one considers mixed-integer
programming approaches, there are at least #
zero—one integer variables. This is a major

problem. For this reason, in order to reduce
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Twe-Phase
MP
Approach

<Problems>

MIP
formulation

<Solution Approach>

<Figure 2> lllustration of two—phase mathematical programming approach

the number of observations applied to

mixed-integer programming approach,

two-phase mathematical

programming
approach is proposed in this study. After all
observations are filtered through phase 1,
remaining observations that are not classified

in phase 1 are applied to phase 2.

3.2 Two-phase mathematical
programming approach.

As mentioned previously in section 3.1,
classification gap has been considered as
undesirable, however, this study views
classification gap as a merely region where
the classification decision is not clear and
additional analysis is required to determine the
appropriate classification rules. Moreover, to
prevent unacceptable solution and reduce
computational efforts, appropriate normalization

constraints are presented in two-phase

mathematical programming approach.

Simple illustration of composition of
programming

approach is presented in Figure 2.

two-phase mathematical

In phase 1, the cdlassification gap is
identified, while in phase 2 the explicit focus is
to analyze the fuzzy area of observations
defined by the classification gap. Problem
description and mathematical formulation of

Phase 1 and Phase 2 are following.

3.2.1 Phase 1

The objective of phase 1 is to minimize
sum of deviations from each classification
score. The objective of phase 1 is to minimize
sum of deviations from each classification
score. Phase 1 is illustrated in Figure 3.

Suppose one has a sample of ™ in group 1
(‘good) and " in group 2 (‘bad) (r=m+n,)
and a set of P attributes from the application

form, * is the value of attribute /

_9_
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<Figure 3> Graphical illustration of phase 1

(/=12..7) in observation , (I=L2..m)
from group k*=12). Let Wi be the Jth

attribute weight, €1 “be cut-off value for
group 1, be cut-off value for group 2, 9 be
:deviation from ¢ - when any observation i
from group 1 is misclassified and 4» be
deviation from ¢ when any observation I

from group 2 is misclassified. Phase 1 can be
formulated as follows:

)MMFi%+i%
i=1

(P3 P
(10)
subject to
p
jz:'x“"wf+d“ch’i=1,2,...,nl a1)

Y4
szy.wj -d,, <c,,

= i=n+l,...,n (19

P
X;W; 2C,y, .
jz=1: v 2i=12,..,n 13)

D
E x,.w.<c
277 j 1% -
= i=n +1,...,n

14
¢ —c, 21, (15)
d; d,; =0, 16)
Wir€C2 unrestricted a7

Formulation of phase 1 explicitly considers
the classification gap and facilitates a useful
interpretation of this gap to find appropriate
classification scores. If a classification score of
any observation is over ¢ or under ¢, then
it would be considered as group 1 or group 2,
otherwise it would not decide on phase 1.
Constraints (13) and (14)
constraints for upper and lower classification
score. Constraint (13) restricts classification

are bound

score of observations in group 1 to above ¢..
Similarly, constraint (14) classification score
of observations in group 2 to under & . By
constraint (13) and (14), the objective function

._10_



may be provided a good separation solution.
That is, constraints (13) and (14) try to

enforce the classification score of observations

in group £ to be ¢, wherek =12, Constraint
(15) is gap constraint. The relative difference
between ¢ and ¢ affects the scaling of the

parameter estimates for Wi . Therefore, constraint
(15) is also normalization constraint. In (P3),
¢ and ¢ are simply defined as two decision
variables. Phase 1 has an objective function of
minimizing the sum of deviations from each

group classification score (¢ ). All
observations are filtered through phase 1 and
remaining observations, which are not

classified in phase 1, are applied to phase 2.

3.2.2 Phase 2

After solving (P3) in phase 1, phase 2
considers only observations that are not
classified in phase 1. In phase 2, the ohjective

function is to minimize the weighted sum of

?

<oy !
(Z‘\zy,nj ey {
<

Clagsified ag
group 2
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misclassified observations. Graphical illustration
of phase 2 is represented in Figure 4,

Tet m be the number of observations in

group 1 which are unclassified in phase 1, 7
be the number of observations in group 2
which are unclassified in phase 1 (m=m +m,)
Ci2 be the cost of misclassifying group 1 as
group 2 and Ca be the cost of misclassifying
group 2 as group 1.

In phase 2, the cut-off value ¢ can be
determined by solving the
mixed-integer programming (P4):

following

Minz,=C, > 1, +Cyy 3T,
(P4) ’ ”; : “lizmz,;lz (18)
subject to

P

Y x (Wi —w)+M I, 2c,

j=1

i=12,...,m (19)

P

v
E X, (Wi =w;)-M-I, <c,
j=1

P
O vy ze)

\\ 7=l

Classified as
group 1

JL Classification gap

<Figure 4> Graphical illustration of Phase 2

_11_
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i=m,+1,...,m (20)

P
Y (wi+w))=1
Jj=1 1

@D
wjf—gajzo’ j=12,...p (22)
wi-a, S0 j=12,.,p @3)
wjf—g.ﬂjZO’ j=12,...,p 24
w;=B; <0 j=12,...p (25)
aj+ﬂj sly j=12,..,p (26)
€ unrestricted 27
wj_',wj—_ZO’ (W, =W —w)) (28)

, where 1u is binary variable in observation
i from group k, that is, if an observation is
misclassified, then 7x =1, otherwise, 14 =9, M
is a large positive number. )

To prevent unacceptable solution which is
mentioned previously in  section 31,

normalization constraints are added to the

formulation (P4) (refer to Glen (1999)).
Constraints  (21)-(26) are normalization
constraint. % and#; are binary variables such
that @ =1ow 2&4q ﬂ,:]@w}key
where ¢ is a small positive number. % =1 if
and only if %/ is positive and # =1if and
only if ¥; is negative,

Procedure of two-phase mathematical
programming approach can be summarized as
follows:

Step 1: Solve formulation (P3),

Step 2: According to each classification
score from (P3), classify observations into
each group.

Step 3 Solve formulation (P4) with
observations which are not classified into
group 1 or group 2 in step 2.

Step 4: According to the final cut-off value
(classification score), classify unclassified
observations into each group.

Through this procedure, two-phase
mathematical programming approach can
classify loan applicants more accurate than
the existing mathematical programming
approaches.

In Chapter 4, the performance of two-phase
mathematical- programming approach is
compared - with that of other existing
approaches by experimenting on real
managerial problems computationally. And the
results show that two-phase mathematical
programming approach may be a'good
alternative to other statistical approaches.

IV. Computational experiments

To test the effectiveness of the proposed
approach, this study compared it with other
approaches. Two-phase mathematical
programming approach was implemented by
CPLEX mathematical programming solver.
This solver was also used to solve the MSD

and MIP formulations discussed in chapter 2.

_12._.



In two-phase mathematical programming
approach, in order to solve formulation (P4) of
phase 2, each parameter was set up as
following: Cn=1,Cy, =5 M =1000 ¢=0.001,
Cost matrix for all dataset (Michie,
Spiegelhalter, and Taylor, 1994) is represented
in Table 1. These costs are what are called
"opportunity costs”. The columms are the
predicted class and the rows the true class.

<Table 1> Cost Matrix for the datasets

| Good (D | Bad @

Good (1) 0 1

Bad (2) J> 5 0
Logistics regression, Fisher's linear
discrimnant  function, MSD, MIP and
two—phase mathematical programming

approach were applied to two data sets. The
Fisher's linear discriminant function and
logistic regression were used to calculate
discriminant function by using SAS. All
computations were carried out on a Pentium-
Il computer.

The data set, German credit data is from
the Department of Statistics, University of
Munich
The qualitative attributes are given a score
that 1is

(http://www.stat.uni-muenchen.de).

based on the assessment of
experienced bank specialists dealing with
credits (see Appendix). German credit data set
contans 400 applicants with 280 being

Consumer Credit Scoring Model with Two-Stage Mathematical Programming

accepted and 120 being rejected. Usually the
information needed by the decision maker is
given on the application form. The data set
consists of twenty attributes which are listed

as follows:

1) % Status of checking account (qualitative),

2) *»: Duration in months (numerical),

3) *s: Credit history (qualitative),

4) xs Purpose (qualitative),

5) *s: Credit amount (numerical),

6) % Savings account/bonds (qualitative),

7) *7: Present enployment since (qualitative),

8) *s: Installment rate in percentage of
disposable income (numerical),

9) %5 Personal status and sex (qualitative),

10) %o : Other debtors/ guarantors (qualitative),

11) *n: Present residence since (numerical),

12) %2 Property (qualitative),

13) *i: Age in years (numerical),

14) %4 : Other installment plans (qualitative),

15) *is: Housing (qualitative),

16) *1s: Number of existing credits at this
bank (numerical),

17) *v: Occupation (qualitative),

18) *i:: Number of people being liable to
provide maintenance for (numerical),

19) s Telephone (binary),

20) *»: Foreign worker (binary),

_,13__
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<Table 2> Hit ratio of five approaches to German credit data

i *{ o
Training
12 29 A 15 0.7800
samples
Validation
071
- 118 2 % % 50
Training 106 15 e 2 0.7650
samples
Validation
. 104 16 4 39 0.7250
Training
% 0;
i 107 % 0 670
Validation 103 % 3 0 06300
samples
Training 104 % % 3 0,690
sammples ;
Validation
18 06150
- 105 39 R
Training 113 13 50 % 08150
-sarmples
Validation 105 2 % 38 07000
samples

For German credit data, to test the
predictive of the
techniques, 200 applicants are chosen as the

power classification
training samples and the remaining 200
applicants are used as validation samples.
Among the attributes (variables), status of

checking account (%), credit history (%s),

other debtors/guarantors (*u ), property (*:),
job (*17) and telephone (*1v) are considered as
common important factors in five approaches.

The hit ratios and misclassification cost of
five approaches to German credit data are
reported in Table 2 and Table 3, respectively.

<Table 3> Misclassification cost of five approaches o the German credit data

 Logistic

- regreg;sior;
Training samples 160 107 26 173 8
Validation sarrples 18% 119 210 233 148

_14_



In Table 2 two-phase mathematical
programming shows the higher hit ratio than
other approaches in training sample.
Moreover, misclassification cost of two-phase
matheratical programming is less than that of
any other approaches in training sample in
Table 3.

In case of German credit data, 13 attributes
are qualitative or binary variables among
attributes, therefore the multivariate normality
assumption underlying parametric statistical
technique such as Fisher' linear discriminant
function is being violated. Under this situation,
two-phase mathematical approach may be
also a good alternative to parametric
statistical techniques. Similarly bankruptcy
firm data, two-phase mathematical progranmming
also outperformed other existing mathematical
programming approaches.

Overall, experimental results conclude that

two-phase mathematical

programming
approach may be a good alternative to cther
statistical approaches and an improving
approach of the existing mathematical

programming approaches.

V. Conclusions

In this study, two-phase mathematical
programming approach is introduced for
solving the credit scoring problem. This

approach differs from previous formulations in

Consumer Credit Scoring Model with Two-Stage Mathematical Programming

that it explicitly considers the classification
gap and provides a means for classifying
observations which fall within this area. By
using linear programming (LP) considering
classification gap, phase 1 makes decision to
grant credit, deny credit, or to seek additional
information before making a decision. Phase 2
finds a cut-off value, which minimizes the
misclassification cost of granting credit to
‘bad or denying credit to ‘good’ by wusing
mixed-integer programming (MIP). However,
the assumption of the cost matrix could be
changeable depending on the policy of
organization, which can be affected to the
results.

The purpose of this study has been tested
whether this approach perform as well as
In the
empirical test carried out here on German
credit data, this approach outperformed the
existing mathematical programming approaches
and other statistical approaches.

This study concludes that two-phase
mathematical programming approach can be a
good or better alternative to statistical
and traditional mathematical
approaches to credit scoring and other

other statistical approaches do.

approaches

discriminant problems.
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Appendix. German credit data
The following given score for the categorical (qualitative/binary) variables is based on the

assessment of experienced bank specialists dealing with credits.

Variable Description Categories Score

No balance or debit

0<=--<200DM
-+ >= 200 DM or checking account for at least 1 year

Status |Balance of current account|

No running account

No previous credits / paid back all previous credits
Paid back previous credits at this bank
No problems with current credits at this bank

Credit

history Payment of previous credi

O Wik N |+~ |&~]TWw|(N

Hesitant payment of previous credits

Problematic running account / there are further credits
running but at other banks

—

New car

Used car

Items of furniture
Radio / TV
Household appliances

Purpose [Purpose of credit Repair

Education

Vacation

Retaining

LR [(N OO |WiN |-

[—
o

Business
Others

< 100, DM

100, <= --- < 500, DM
Savings |[Value of savings or stocks 500, <= --- < 1000, DM
>= 1000, DM

Not available / no savings 1

W |IN|O

Unemmployed 1

Employ | Has been enployed by

ment current employer for <= 1 year 2

1 <= - < 4 years 3
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4 <= --- <7 years

>= 7 years

Male: divorced / living apart

Female: divorced / living apart / married/ male: single
Male: married / widowed

Female: single

Marital Marital Status / Sex

W lw [ O]

None

—

Further debtors / )
Guarantors Co-Applicant

Guarantor

Debtor

Ownership of house or land

Most valuable available | Savings contract with a building society / Life insurance
assets Car / Other

Not available / no assets

Property

At other banks

Credits | Further running credits | At department store or mail order house

No further running credits

Rented flat

Housing Type of apartment Owner-occupied flat
Free apartment

Unemployed / unskilled with no permanent residence

Unskilled with permanent residence

Job Occupation
Skilled worker / skilled employee / minor civil servant

Executive / self-employed / higher civil servant

No
Yes

Phone Telephone

DO | — | WD (WD e PR N

Yes 1

Foreign Foreign worker

No 2
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