• Title/Summary/Keyword: 평점예측

Search Result 87, Processing Time 0.028 seconds

The Developments of changes in shareholders wealth around merger announcement. (건설업종 신용평점 모형의 개발과 검증)

  • Lee, Seong-Hyo
    • The Korean Journal of Financial Management
    • /
    • v.19 no.2
    • /
    • pp.111-134
    • /
    • 2002
  • 본 연구에서는 건설업종에 특화된 신용평가 모형을 개발하여 건설업종에 대한 부도 예측력를 제고하고자 하였다. 건설업은 여타 업종과는 다른 재무적 특성을 지니고 있다. 특히, 재무적 안정성이 취약하고 자산의 대부분이 매출채권, 재고자산으로 구성되어 유동성이 극히 낮은 실정이다. 본 연구는 이러한 건설업종의 특성을 충분히 감안한 신용평가 모형을 개발하고자 한것이다. 신용평가 모형 중 그 현실적 유용성이 높아 많이 이용되어 오던 신용평점 모형을 개발하였다. 총 2,475개 건설업체를 대상으로 모형구조 및 각종 계량지표 및 비계량지표에 대한 분석을 주로 평균차이 검증과 로짓분석에 의거 선정하였다. 그 결과 새로운 신용평점 모형은 매출액 경상이익률, 총 현금흐름 대 차입금 비율 등 9개의 재무지표와 5분류의 비재무지표로 구성되었다. 이 모형을 기존의 신용평점모형과 비교한 결과 신규모형의 변별력이 높은 것으로 나타났다. 본 연구가 제시한 신용평점모형과 그 개발 방법이 향후 금융기관들의 부실을 줄이고 결과적으로 수익성을 개선하는데 일조하리라 기대된다.

  • PDF

Recommendation Reflecting User Preferences on Genres (유저의 장르 선호도를 반영한 추천)

  • Lee, Ho-Jong;Hwang, Won-Seok;Kim, Sang-Wook
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.1285-1286
    • /
    • 2011
  • MovieLens를 대상으로 하는 추천 시스템에 대한 연구 중 k-NN 추천 방법은 정확도가 비교적 높지만 평점을 예측할 수 없는 상황이 발생할 수 있다. 본 논문에서는 기존 방법의 문제점을 해결한 장르기반 추천 방법 제안하고, 실험을 통하여 제안하는 방법이 모든 영화에 대한 평점의 예측이 가능함을 검증한다.

A multi-channel CNN based online review helpfulness prediction model (Multi-channel CNN 기반 온라인 리뷰 유용성 예측 모델 개발에 관한 연구)

  • Li, Xinzhe;Yun, Hyorim;Li, Qinglong;Kim, Jaekyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.171-189
    • /
    • 2022
  • Online reviews play an essential role in the consumer's purchasing decision-making process, and thus, providing helpful and reliable reviews is essential to consumers. Previous online review helpfulness prediction studies mainly predicted review helpfulness based on the consistency of text and rating information of online reviews. However, there is a limitation in that representation capacity or review text and rating interaction. We propose a CNN-RHP model that effectively learns the interaction between review text and rating information to improve the limitations of previous studies. Multi-channel CNNs were applied to extract the semantic representation of the review text. We also converted rating into independent high-dimensional embedding vectors representing the same dimension as the text vector. The consistency between the review text and the rating information is learned based on element-wise operations between the review text and the star rating vector. To evaluate the performance of the proposed CNN-RHP model in this study, we used online reviews collected from Amazom.com. Experimental results show that the CNN-RHP model indicates excellent performance compared to several benchmark models. The results of this study can provide practical implications when providing services related to review helpfulness on online e-commerce platforms.

A Study on Customer Review Rating Recommendation and Prediction through Online Promotional Activity Analysis - Focusing on "S" Company Wearable Products - (온라인 판매촉진활동 분석을 통한 고객 리뷰평점 추천 및 예측에 관한 연구 : S사 Wearable 상품중심으로)

  • Shin, Ho-cheol
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.118-129
    • /
    • 2022
  • The purpose of this report is to study a strategic model of promotion activities through various analysis and sales forecasting by selecting wearable products for domestic online companies and collecting sales data. For data analysis, various algorithms are used for analysis and the results are selected as the optimal model. The gradation boosting model, which is selected as the best result, will allow nine independent variables to be entered, including promotion type, price, amount, gender, model, company, grade, sales date, and region, when predicting dependent variables through supervised learning. In this study, the review values set as dependent variables for each type of sales promotion were studied in more detail through the ensemble analysis technique, and the main purpose is to analyze and predict them. The purpose of this study is to study the grades. As a result of the analysis, the evaluation result is 95% of AUC, and F1 is about 93%. In the end, it was confirmed that among the types of sales promotion activities, value-added benefits affected the number of reviews and review grades, and that major variables affected the review and review grades.

Improvement of recommendation system using attribute-based opinion mining of online customer reviews

  • Misun Lee;Hyunchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.259-266
    • /
    • 2023
  • In this paper, we propose an algorithm that can improve the accuracy performance of collaborative filtering using attribute-based opinion mining (ABOM). For the experiment, a total of 1,227 online consumer review data about smartphone apps from domestic smartphone users were used for analysis. After morpheme analysis using the KKMA (Kkokkoma) analyzer and emotional word analysis using KOSAC, attribute extraction is performed using LDA topic modeling, and the topic modeling results for each weighted review are used to add up the ratings of collaborative filtering and the sentiment score. MAE, MAPE, and RMSE, which are statistical model performance evaluations that calculate the average accuracy error, were used. Through experiments, we predicted the accuracy of online customers' app ratings (APP_Score) by combining traditional collaborative filtering among the recommendation algorithms and the attribute-based opinion mining (ABOM) technique, which combines LDA attribute extraction and sentiment analysis. As a result of the analysis, it was found that the prediction accuracy of ratings using attribute-based opinion mining CF was better than that of ratings implementing traditional collaborative filtering.

Prediction of Good Seller in Overseas sales of Domestic Books Using Big Data (빅데이터를 활용한 국내 도서의 해외 판매시 굿셀러 예측)

  • Kim, Nayeon;Kim, Doyoung;Kim, Miryeo;Jung, Jiyeong;Kim, Hyon Hee
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.401-404
    • /
    • 2022
  • 한국 문학이 세계로 뻗어나감에 따라 해외 시장에서 자리를 잡는 것이 중요해진 시점이다. 본 연구에서는 2016 년도부터 2020 년도까지 최근 5 년간 해외 출간된 도서들 중에서 굿셀러로 분류되는 누적 5 천부 이상 판매 여부를 예측하고자 했다. 굿셀러로 분류되는 도서는 전체 번역 도서 중 적은 비율을 차지하여 데이터 불균형이 발생하였으며, 본 연구에서는 SMOTE 기법과 앙상블 알고리즘을 적용하여 데이터 불균형 문제를 해결하였다. 그 결과, 데이터 클래스 비율이 1:1 에 가까울수록 성능 개선 효과가 나타났으며 LightGBM 모델이 99.83%의 AUC 값을 얻어 다른 앙상블 알고리즘에 비해 가장 좋은 예측 성능을 보임을 검증하였다. 또한 누적 5 천부 이상 판매 여부 예측에 있어 큰 영향을 미치는 변수로는 작가가 가장 중요한 요인으로 나타났으며 출간 국가, 그리고 평점 평균, 평점 참여자 수 같은 온라인 요인도 판매 예측에 유의미한 변수로 나타난 것을 확인할 수 있었다.

A Study on Machine Learning-Based Modelling of Online Review Sentiment Analysis (머신러닝 기반 온라인 리뷰 감성 분석 모델링에 대한 연구)

  • Minsu Kim;Juhee Kim
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.5
    • /
    • pp.1-11
    • /
    • 2024
  • Online reviews play a crucial role in assessing a company's market value and are a significant factor influencing profitability. As such, sentiment analysis of online reviews has emerged as a key indicator for predicting business success. This study focuses on restaurant reviews from Yelp, one of the leading online review platforms, utilizing the Yelp Open Dataset. Six machine learning algorithms were applied to predict the sentiment polarity of these reviews: Logistic Regression, Support Vector Machine (SVM), Random Forest, Gradient Boosting Machine (GBM), XGBoost, and LightGBM. Performance evaluations demonstrated that Logistic Regression, SVM, and LightGBM achieved the highest accuracy, with a score of 0.91. The primary contribution of this study is its ability to transform unstructured review text into quantifiable data, enabling businesses, especially startups, to effectively analyze customer feedback and predict ratings. These insights are expected to assist business owners in forecasting consumer behavior and developing strategic marketing approaches.

  • PDF

Movie Recommendation System based on Latent Factor Model (잠재요인 모델 기반 영화 추천 시스템)

  • Ma, Chen;Kim, Kang-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.125-134
    • /
    • 2021
  • With the rapid development of the film industry, the number of films is significantly increasing and movie recommendation system can help user to predict the preferences of users based on their past behavior or feedback. This paper proposes a movie recommendation system based on the latent factor model with the adjustment of mean and bias in rating. Singular value decomposition is used to decompose the rating matrix and stochastic gradient descent is used to optimize the parameters for least-square loss function. And root mean square error is used to evaluate the performance of the proposed system. We implement the proposed system with Surprise package. The simulation results shows that root mean square error is 0.671 and the proposed system has good performance compared to other papers.

Semantic analysis via application of deep learning using Naver movie review data (네이버 영화 리뷰 데이터를 이용한 의미 분석(semantic analysis))

  • Kim, Sojin;Song, Jongwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.19-33
    • /
    • 2022
  • With the explosive growth of social media, its abundant text-based data generated by web users has become an important source for data analysis. For example, we often witness online movie reviews from the 'Naver Movie' affecting the general public to decide whether they should watch the movie or not. This study has conducted analysis on the Naver Movie's text-based review data to predict the actual ratings. After examining the distribution of movie ratings, we performed semantics analysis using Korean Natural Language Processing. This research sought to find the best review rating prediction model by comparing machine learning and deep learning models. We also compared various regression and classification models in 2-class and multi-class cases. Lastly we explained the causes of review misclassification related to movie review data characteristics.

Personalized Hybrid Outfit Recommendation Based on Image Dissimilarity (이미지 비유사도 기반의 개인화된 하이브리드 의류 추천 모델)

  • Jeong-Won Yang;Ji-Hye Baek;Hyon-Hee Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.459-460
    • /
    • 2023
  • 기존의 추천시스템은 상품간 혹은 사용자 간의 유사도를 기반으로 작동한다. 하지만 이는 사용자가 유사한 상품 추천 속에 갇히게 되는 필터 버블의 문제와 추천시스템의 고질적인 문제인 데이터 희소성 문제를 피할 수 없게 된다. 따라서 본 연구에서는 사용자의 취향과 체형 정보를 반영하여 사용자의 평점을 예측하는 협업 필터링 기반 딥러닝 추천과 상품간 비유사성을 고려하여 사용자의 평점을 예측하는 내용 기반 추천을 혼합한 하이브리드 추천 모델을 구축하여 기존 추천시스템의 문제점을 해결하였다. 모델의 성능평가를 위해 인터넷 의류 쇼핑몰을 대상으로 유사한 이미지를 활용한 하이브리드 추천 모델과 NDCG 값을 비교하였고 유사도가 낮은 이미지를 활용한 모델이 더 우수한 성능을 보였다. 이는 다른 제품과는 달리 소비자가 의류를 구매할 경우 이미 구매한 상품과 유사한 상품보다는 유사하지 않은 상품을 구매할 가능성이 크다는 것을 보여준다.