• Title/Summary/Keyword: 평면응력

Search Result 297, Processing Time 0.023 seconds

A Study on the Stress Concentration and Diminishing in Structural Member with Arbitrary Section Using Finite Element Method (유한요소법을 이용한 집중하중을 받는 임의단면형상부재에서 응력집중현상과 소멸현상에 관한 연구)

  • 최종근;이종재;김동현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1069-1078
    • /
    • 1990
  • It is shown that the performance of finite element based on energy orthogonal functions may be superior to conventional formulation for plane stress problem. Using this finite element, it is then attempted to show the distribution of stress concentration effect for subsurface under loading point. It turned out that the stress concentration effect for subsurface is not dependent on the width of the member but the loading area. And then it is shown that the solution attained by taking the stress function as a Fourier series is not satisfactory in y<0.1B.

Thermoelastic deformation and stress analysis of a FGM rectangular Plate (경사기능재료 사각 판의 열 탄성 변형과 응력 해석)

  • Kim,Gwi-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.34-41
    • /
    • 2003
  • A Green's function approach is adopted for analyzing the thermoelastic deformation and stress analysis of a plate made of functionally graded materials (FGMs). The solution to the 3-dimensional steady temperature is obtained by using the laminate theory. The fundamental equations for thermoelastic problems are derived in terms of out-plane deformation and in-plane force, separately. The thermoelastic deformation and the stress distributions due to the bending and in-plane forces are analyzed by using a Green’Às function based on the Galerkin method. The eigenfunctions of the Galerkin Green's function for the thermoelastic deformation and the stress distributions are approximated in terms of a series of admissible functions that satisfy the homogeneous boundary conditions of the rectangular plate. Numerical examples are carried out and effects of material properties on thermoelastic behaviors are discussed.

Mission based gas turbine engine rotating parts life evaluation (임무를 가지는 가스터빈 엔진 회전부품 피로수명 평가)

  • Kim, Kyung-Heui;Kim, Hyun-Jae;Chen, Seung-Bae;Kim, Dong-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.385-390
    • /
    • 2009
  • The gas turbine engine structures usually are placed on high thermal mechanical stress condition. For general low cycle fatigue evaluation, simple fatigue criterion based on critical plane approach is developed. LCF life of turbine wheel is evaluated with this criterion and process contrived together.

  • PDF

Analysis of Stress Variation According to Removal of Shear Wall At the Remodeling of Shear Wall Type Apartment (벽식아파트 리모델링시 내력벽 제거에 따른 응력변화 분석)

  • Lee Jae-Cheol;Jung Jong-Hyun;Lim Nam-Gi
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.3 s.25
    • /
    • pp.72-80
    • /
    • 2005
  • The number of apartments has been increased, and it is time to activate the remodeling or reconstruction. Recently remodeling has been preferred to reconstruction, because reconstruction might cause many problems. At this point of time, remodeling could save resources, preserve environment, and expand the construction market places. However, most research for remodeling is aimed to improve the financial value, and structural effects being caused by floor plan modification has not been done yet quantitatively. Remodeling naturally brings to floor plan modification, and it can cause serious problems of structural side. So we made apartments an object of study, then analyzed stress variation of structural elements according to the removal of shear wall, supposing the floor plan modification. For this purpose, we selected a sample of universal apartment floor plan and extracted floor plan modification factors. Then we applied the factors to sample floor plan and organized the results of stress variation of structural elements. As results, walls are most harmful when the independent walls are removed, and in case of slabs, it is most critical when continuous walls are removed.

Dynamic Fracture Analysis with State-based Peridynamic Model: Crack Patterns on Stress Waves for Plane Stress Elastic Solid (상태 기반 페리다이나믹 모델에 의한 동적취성파괴 해석: 평면응력 탄성체의 응력 전파와 균열패턴 분석)

  • Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.309-316
    • /
    • 2015
  • A state-based peridynamic model is able to describe a general constitutive model from the standard continuum theory. The response of a material at a point is dependent on the deformation of all bonds connected to the point within the nonlocal horizon region. Therefore, the state-based peridynamic model permits both the volume and shear changes of the material which is promising to reproduce the complicated dynamic brittle fracture phenomena, such as crack branching, secondary cracks, cascade cracks, crack coalescence, etc. In this paper, the two-dimensional state-based peridynamic model for a linear elastic plane stress solid is employed. The damage model incorporates the energy release rate and the peridynamic energy potential. For brittle glass materials, the impact of the crack-parallel compressive stress waves on the crack branching pattern is investigated. The peridynamic solution for this problem captures the main features, observed experimentally, of dynamic crack propagation and branching. Cascade cracks under strong tensile loading and secondary cracks are also well reproduced with the state-based peridynamic simulations.

Stress Distribution Under Line Load in Transversely Isotropic Rock Mass (평면이방성 암반에서 선하중에 의한 응력분포 특성)

  • Lee Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.288-295
    • /
    • 2005
  • Many mechanical defects originated from various geological causes make rock mass exhibit anisotropic characteristics. Understanding how the stress distribution occurs in anisotropic rock mass is, therefore, very important for the design of footings on rock and rock structures. In this study, the patterns of elastic stress distribution, developed by acting line load on the surface, in transversely isotropic was investigated. The influence of joint stiffness, joint spacing, and dip angle on the stress distribution was examined. By assuming the Mohr-Coulomb criterion as joint slip condition, the development of joint slip zone was also discussed.

A Newly-developed Plane Strain Testing Device and Its Applicability (새로운 평면변형률 시험장비의 개발과 적용성 검증)

  • Kim Chang-Youb;Lee Young-Sun;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.5-14
    • /
    • 2006
  • A simple and useful plane strain testing device was newly developed and its mechanical features were presented in this paper. The new testing device was designed to be capable of testing various stress paths expected under plane strain condition with only the conventional triaxial loading system. The applicability of the new testing device was systematically checked both by theoretical evaluation and by experiments. As a result, it was found that the new testing device has much wider range of application than the conventional plane strain testing devices.

A Closed Form Nonlinear Solution for Large Pure Bending Deformation of Solid Plate (고체 평판의 비선형 순수굽힘변형에 대한 수학적 정해)

  • Youngjoo Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.220-225
    • /
    • 1998
  • 압축성 초탄성 평판의 순수굽힘에 대한 비선형 변형해석의 수학적 정해가 본 논문에 구해져 있다. 이차원 평면 변형도 상태가 해석을 위하여 가정되었으며, 비선형 순수굽힘 변형해석결과는 고전적인 선형 순수굽힘 변형해석결과와 비교되었다. 고전적인 선형굽힘 결과와는 다르게 비선형 순수굽힘 상태에서는 반경방향응력은 영이 아니며 또한 각방향응력도 선형 상태가 아닌 것으로 규명되었다.

  • PDF

3D Semi-elliptical Interfacial Crack Front Stress Fields in Welded Joints (용접부 3차원 반타원 계면균열선단에서의 응력장)

  • 최호승;이형일;송원근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.649-659
    • /
    • 2002
  • For a variety of elastic-plastic stress fields of plane strain specimens, many research works verified the validity of J-T approach. To generalize the validity of J-T method, however, further investigations are needed for more practical 3D structures than the idealized geometries as plane strain specimens. In this work, selecting two main types of structures such as plate and straight pipe, we perform 3D finite element(FE) modeling, and accompanying elastic, elastic-plastic FE analyses. We then study the validity of J-T application to 3D structures, and present some useful informations for the design or assessment of pipe welds by comparing the stress fields from the detailed 3D FE analyses to those predicted with J-T two parameters.

Comparison between Numerical Results of 1D Beam and 2D Plane Stress Finite Element Analyses Considering Aspect Ratio of Cantilever Beams (캔틸레버보의 형상비에 따른 1차원 보와 2차원 평면응력 유한요소해석 결과의 비교)

  • Kang, Yoo-Jin;Sim, Ji-Soo;Cho, Hae-Sung;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.459-465
    • /
    • 2015
  • There exist different kinds of aircrafts, such as conventional airplane, rotorcraft, fighter, and unmanned aerial vehicle. Their shape and feature are dependent upon their own assigned mission. One of the fundamental analyses performed during the aircraft design is the structural analysis. It becomes more complicated and requires severe computations because of the recent complex trends in aircraft structure. In order for efficiency in the structural analysis, a simplified approach, such as equivalent beam or plate model, is preferred. However, it is not clear which analysis will be appropriate to analyze the realistic configuration, such as an aircraft wing, i.e., between an equivalent beam and plate analysis. It is necessary to assess the limitation for both the one-dimensional beam analysis and the two-dimensional plate theory. Thus, in this paper, the static structural analysis results obtained by EDISON solvers were compared with the three-dimensional results obtained from MSC NASTRAN. Before that, EDISON program was verified by comparing the results with those from MSC NASTRAN program and other analytic solutions.