• 제목/요약/키워드: 평면도형의 둘레

검색결과 4건 처리시간 0.015초

평면도형의 둘레 문제 해결에 관한 제언 (A Study on Solving Circumference of Plane Figure)

  • 노은환;정상태
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제19권4호
    • /
    • pp.291-311
    • /
    • 2016
  • 연구자는 직각으로만 이루어진 계단 모양의 둘레를 구하는 과정에서 이미 알고 있는 직사각형의 둘레를 구하는 방식을 활용하지 못하고 어려움을 겪는 모습을 보았다. 이에, 평면도형의 둘레에서 학생들이 어떠한 어려움을 겪고 있는지 확인하고 어려움을 겪는 학생들을 도울 수 있는 방법을 찾고자 하였다. 이를 위해 평면도형의 둘레 문제에 관한 다수 학생의 기록지를 분석하고, 그들 중 일부를 대상으로 면담을 수행하였다. 그 결과 학생들은 둘레를 구하기 위해 주어진 정보의 인식과, 그것을 해결에 필요한 정보로 전환하는 두 측면 모두에 어려움을 겪고 있으며, 둘레가 길이의 속성을 갖는다는 선행지식도 적절히 구성되어 있지 않음을 알 수 있었다. 이러한 결과를 토대로 이 연구에서는, 평면도형의 둘레 문제해결을 돕기 위한 지도방안을 제안하였다.

평면도형의 둘레와 넓이, 입체도형의 겉넓이와 부피에 대한 초등학교 6학년 학생들의 수행 능력 조사 (A study on the performance of sixth-grade elementary school students about the perimeter and area of plane figure and the surface area and volume of solid figure)

  • 임영빈;임예은;김수미
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제58권2호
    • /
    • pp.283-298
    • /
    • 2019
  • 초등학교 교육과정에 포함된 측정 속성 가운데 둘레와 넓이, 겉넓이와 부피는 5, 6학년에서 집중적으로 다루어진다. 그러나 이 영역에서 학생들의 수행능력이 어느 정도가 되며 어떤 문제가 있는지에 대해서는 알려진 바가 많지 않다. 이 연구는 평면도형의 둘레와 넓이, 입체도형의 겉넓이와 부피에 대한 초등학교 6학년 학생들의 이해 정도를 진단하고, 각 요소별 수행 능력을 비교 분석하여 차후 수학 교과서 개발 및 측정 영역 지도를 위한 시사점을 도출하고자 하였다. 이를 위해 둘레, 넓이, 겉넓이, 부피, 둘레와 넓이의 관계, 겉넓이와 부피의 관계에 관련된 문항을 구성하여 6학년 학생 95명을 대상으로 수행 능력을 분석하였다. 분석결과 초등학교 6학년들의 수행능력이 둘레, 겉넓이, 둘레와 넓이의 관계, 겉넓이와 부피의 관계 영역에서 특히 낮은 것으로 드러났다. 이러한 연구 결과를 바탕으로 둘레와 넓이, 겉넓이와 부피 개념의 도입 순서와 지도 방법, 지도 순서 등에 대한 몇 가지 아이디어를 제안하였다.

수학적 지식의 구조와 문제 해결을 통한 탐구학습

  • 박혜경;전평국
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제19권2호
    • /
    • pp.389-407
    • /
    • 2005
  • 수학은 위계적이고 구조적인 특성을 가지고 있어서 학생들이 적절하게 학습하면 내적 동기유발이 가능하고 흥미 있게 학습해 나갈 수 있는 반면 단편적인 지식들로 학습하려 한다면 그 양이 방대해지고 제대로 이해하기가 어렵다. 그러므로 교사는 수학적 지식의 구조를 깨달아 지식의 본체가 내적으로 어떻게 조직되고 상호 관련되어 있는지 알아야 하고 학생들이 수학적인 아이디어와 절차를 획득하고 탐구하게 하는 적절한 문제를 제시하여 문제해결을 통해 가르쳐 가는 방법을 생각해야 할 것이다. 이 때에 학생들은 문제해결 과정에서 능동적인 역할을 하면서 자신이 학습하고 있는 것의 핵심을 인식하고 호기심을 갖고 유의미한 기능들을 이끌어내는 학습을 해야 하는데, 이는 오랜 전통의 탐구 학습과 그 맥락을 같이 하는 것이다. 수학교과 고유의 특성을 살려 지식의 구조를 가르침에 있어서 교수 방법으로의 문제해결을 통한 지도와 학습 방법으로의 탐구학습 과정은 잘 조화될 수 있다. 이러한 조화된 모습을 드러나게 하고자 초등학교 5학년 가 단계에서 '평면도형의 넓이와 둘레 사이의 관계'를 탐구하게 하는 문제해결을 통한 탐구학습 과제를 제시해 보았다. 30-40년을 거슬러 올라가는 역사를 갖는 지식의 구조나 탐구학습, 문제해결에 대한 관심은 오늘날에도 여전히 시사하는 바가 크다고 하겠다. 수학교육에 관한 연구들은 완전히 새로운 것이기보다는 이전의 것들이 주는 의미를 되새기고 오늘의 상황에 비추어 해석할 때 수학교육은 한 단계 올라서게 된다.

  • PDF

초등학교 5학년 학생들의 넓이 측정과 관련된 지식 상태의 분석

  • 박혜경;김영희;전평국
    • 한국수학교육학회:학술대회논문집
    • /
    • 한국수학교육학회 2006년도 제37회 전국수학교육연구대회 프로시딩
    • /
    • pp.79-90
    • /
    • 2006
  • 새로운 것을 학습할 때 학생들은 자신이 어떤 지식 상태를 갖고 있는지에 따라 상당히 다른 이해의 정도를 나타낸다. 유의미한 이해를 이끌어 내기 위해서 교사들은 학생들의 사전 지식상태를 파악하고 그것에 근거하여 학습과제를 제시할 필요가 있으며, 어떤 단원을 학습한 후에 학생들의 지식상태를 파악해 보는 방법도 모색되어야 할 것이다. 본 연구는 충청북도 C도시 4개 초등학교 5학년 학생 285명에게 수학 5-가 6단원을 학습한 후 넓이 측정과 관련된 지식상태 검사를 실시하고 그 결과를 Doignon & Falmagne(1999)의 지식공간론을 활용하여 분석하였다. 학생들의 답안에서 평면도형의 넓이 측정과 관련된 지식의 상태를 파악하고 세 가지 범주-측정의 의미 파악, 공식 활용, 전략의 사용-에서 지식 상태의 위계도를 작성하였다. 첫 번째 범주인 측정의 의미 파악과 관련하여 학생들은 둘레나 넓이의 속성 파악에서 혼동을 보이거나 직관적으로 넓이를 비교해야 하는 과제에서도 계산을 시도하는 지식 상태가 반 이상인 것으로 드러났다. 두 번째 범주인 공식 활용과 관련해서는 학생들의 상당수가 부적합한 수치를 넣어 무조건 넓이 계산을 시도하고 있었다. 또한 세 번째 범주인 전략 사용에 관해서는 분할이나 등적변형 등의 전략을 알고 있는 학생 중에도 40% 가량은 문제를 표상하는데 어려움이 있어 해결하지 못하는 것으로 드러났다.

  • PDF