• Title/Summary/Keyword: 평균 모델

Search Result 3,604, Processing Time 0.035 seconds

Design and Verification of PCI 2.2 Target Controller to support Prefetch Request (프리페치 요구를 지원하는 PCI 2.2 타겟 컨트롤러 설계 및 검증)

  • Hyun Eugin;Seong Kwang-Su
    • The KIPS Transactions:PartA
    • /
    • v.12A no.6 s.96
    • /
    • pp.523-530
    • /
    • 2005
  • When a PCI 2.2 bus master requests data using Memory Read command, a target device may hold PCI bus without data to be transferred for long time because a target device needs time to prepare data infernally. Because the usage efficiency of the PCI bus and the data transfer efficiency are decreased due to this situation, the PCI specification recommends to use the Delayed Transaction mechanism to improve the system performance. But the mechanism cann't fully improve performance because a target device doesn't know the exact size of prefetched data. In the previous work, we propose a new method called Prefetch Request when a bus master intends to read data from the target device. In this paper, we design PCI 2.2 controller and local device that support the proposed method. The designed PCI 2.2 controller has simple local interface and it is used to convert the PCI protocol into the local protocol. So the typical users, who don't know the PCI protocol, can easily design the PCI target device using the proposed PCI controller. We propose the basic behavioral verification, hardware design verification, and random test verification to verify the designed hardware. We also build the test bench and define assembler instructions. And we propose random testing environment, which consist of reference model, random generator ,and compare engine, to efficiently verify corner case. This verification environment is excellent to find error which is not detected by general test vector. Also, the simulation under the proposed test environment shows that the proposed method has the higher data transfer efficiency than the Delayed Transaction about $9\%$.

Thermal pointing error analysis of the observation satellites with interpolated temperature based on PAT method (PAT 기반 온도장 보간을 이용한 관측위성의 열지향오차해석)

  • Lim, Jae Hyuk;Kim, Sun-Won;Kim, Jeong-Hoon;Kim, Chang-Ho;Jun, Hyoung-Yoll;Oh, Hyeon Cheol;Shin, Chang Min;Lee, Byung Chai
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.80-87
    • /
    • 2016
  • In this work, we conduct a thermal pointing error analysis of the observation satellites considering seasonal and daily temperature variation with interpolated temperature based on prescribed average temperature (PAT) method. Maximum 200 degree temperature excursion is applied to the observation satellites during on-orbit operation, which cause the line of sight (LOS) to deviate from the designated pointing direction due to thermo-elastic deformation. To predict and adjust such deviation, the thermo-elastic deformation analysis with a fine structural finite element model is accomplished with interpolated thermal maps calculated from the results of on-station thermal analysis with a coarse thermal model. After verifying the interpolated temperatures by PAT with two benchmark problems, we evaluate the thermal pointing error.

Digital predistorters for communication systems with dynamic spectrum allocation (가변 스펙트럼 할당을 지원하는 광대역 전력 증폭기를 위한 디지털 전치왜곡기)

  • Choi, Sung-Ho;Seo, Sung-Won;Mah, Bak-Il;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.307-314
    • /
    • 2011
  • A new predistortion technique for dynamic spectrum allocation systems such as cognitive radio (CR) is proposed. The system model considered in this paper occupies a small band at a time, but the center frequency can be changed in the wide range of frequency. In this scenario. the front-end filter may not eliminate the harmonics of the power amplifier (PA) output. The proposed PD reduces the spectral regrowth of the fundamental signal at the carrier frequency (${\omega}_0$) and removes the harmonics ($2{\omega}_0$, $3{\omega}_0$, ...) at the same time. The proposed PD structure is composed of multiple predistorters (PDs) centered at integer multiples of ${\omega}_0$. The PD at ${\omega}_0$ is for removing spectral regrowth of the fundamental signal, and the others are for harmonic reduction. In the proposed PD structure, parameters of PDs are found jointly. Simulation results show that the spectral regrowth can be reduced by 20dB, and the 2nd and 3rd harmonics can be reduced down to -70dB from the power of the fundamental signal.

A study on the improvement of work flow and productivity in complex manufacturing line by employing the effective process control methods (복잡한 생산라인에서 효율적 공정관리 기법 도입에 따른 공정흐름 및 생산성 개선 연구)

  • Park, Kyungmin;Jeong, Sukjae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.305-315
    • /
    • 2016
  • Due to the change from small volume production to small quantity batch production systems, individual companies have been attempting to produce a wide range of operating strategies, maximize their productivity, and minimize their WIP level by operating with the proper cycle time to defend their market share. In particular, using a complex workflow and process sequence in the manufacturing line has some drawbacks when it comes to designing the production strategy by applying analytical models, such as mathematical models and queueing theory. For this purpose, this paper uses three heuristic algorithms to solve the job release problem at the bottleneck workstation, product mix problem in multi-purpose machine(s), and batch size and sequence in batch machine(s). To verify the effectiveness of the proposed methods, a simulation analysis was performed. The experimental results demonstrated that the combined application of the proposed methods showed positive effects on the reduction of the cycle time and WIP level, and improvement of the throughput.

Health and Environmental Risk Assessment of Pollutants in Pohang (포항지역 오염물질 보건.환경 위해성 평가 -미세먼지의 발생특성 및 농도분포를 중심으로-)

  • Jung, Jong-Hyeon;Choi, Won-Joon;Leem, Heon-Ho;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2719-2726
    • /
    • 2010
  • The purpose of this study was to investigate the scientific basic grounds for the assessment of health and environmental diseases resulting from air pollutants in Pohang. For this study, we investigated pollutants, weather characteristics and concentration distribution of fine particles ($PM_10$) yearly and each season, using data from Air Quality Monitoring Stations. The properties of concentration distribution and seasonal fluctuation of $PM_10$ were studied qualitatively and quantitatively using CALPUFF, air dispersion model. The average concentration of $PM_10$ for each season was spring($75.7{\mu}g/m^3$)>summer($56.8{\mu}g/m^3$)>winter($53.6{\mu}g/m^3$)>fall( $52.7{\mu}g/m^3$). In the case of spring, high concentrations appear due to the Asian dust frequently occurring. The contributions of $PM_10$ classified by the types of pollution source in Pohang were point source 62%>mobile source 33%>area source 5%. An important point is that 97% of emissions were produced from the iron manufacture in steel industry. Therefore, it is necessary to control the emission sources of pollutants and to construct an observation system at Pohang steel industrial complex from now on. It’s time to control the risk factors for health and environmental disease to protect the health of resident in Pohang and its neighboring areas.

Effects of Aerosol Optical Properties on Upward Shortwave Flux in the Presence of Aerosol and Cloud layers (구름과 에어로솔의 혼재시 에어로솔의 광학특성이 상향 단파 복사에 미치는 영향)

  • Lee, Kwon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.301-311
    • /
    • 2017
  • Aerosol optical properties as well as vertical location of layer can alter the radiative balance of the Earth by reflecting and absorbing solar radiation. In this study, radiative transfer model (RTM) and satellite-based analysis have been used to quantify the top-of-atmosphere (TOA) radiative effect of aerosol layers in the cloudy atmosphere of the northeast Asia. RTM simulation results show that the atmospheric warming effect of aerosols increases with their height in the presence of underlying cloud layer. This relationship is higher for stronger absorbing aerosols and higher surface albedo condition. Over study region ($20-50^{\circ}N$, $110-140^{\circ}E$) and aerosol event cases, it is possible to qualitatively identify absorbing aerosol effects in the presence of clouds by combining the UV Absorbing Aerosol Index (AAI) derived from Total Ozone Mapping Spectrometer (TOMS), cloud parameters derived from the Moderate Resolution Imaging Spectro-radiometer (MODIS), with TOA Upward Shortwave Flux (USF) from the Clouds and the Earth's Radiant Energy System (CERES). As the regional-mean radiative effect of aerosols, 6 - 26 % lower the USF between aerosols and cloud cover is taken into account. These results demonstrate the importance of estimation for the accurate quantification of aerosol's direct and indirect effect.

Engraftment of Intraperitoneally Injected Bone Marrow Cells to Newborn Mice Injected with an Angiogenesis Inhibitor (혈관생성 억제제를 주사한 마우스 모델에서의 골수 세포의 복강 내 주입 후 생착)

  • Cho, Su-Jin;Ju, Sun-Young;Woo, So-Youn;Kang, Hyoung-Jin;Ahn, Hyo-Seop;Ryu, Kyung-Ha;Park, Eun-Ae
    • Neonatal Medicine
    • /
    • v.15 no.1
    • /
    • pp.22-31
    • /
    • 2008
  • Purpose : Bronchopulmonary dysplasia (BPD) is characterized by arrested vascular and alveolar growth in the premature lung. Considering the consequences of arrested lung growth, the idea of administering bone marrow cells to enhance the inborn repair mechanism is promising as this may reduce the morbidity and mortality of BPD. We followed enhanced green fluorescent protein (EGFP)-labeled bone marrow cells (BMC) injected intraperitoneally into non-EGFP mice in order to determine their fate after transplantation. Methods : An angiogenesis inhibitor, SU1498, was injected subcutaneously on day 3 in non-EGFP C57BL/6 newborn mice to create a model of arrested alveolar development. On the following day, $1{\times}10^6$ BMCs isolated from major histocompatibility complex (MHC)- matched syngenic EGFP mice were injected intraperitoneally to non-EGFP BPD mice. Morphometric analysis, immunostaining, and confocal microscopy were performed to determine the fate of EGFP-positive stem cells in the injured lung. Results : SU1498 injection reduced alveolar surface area and mean alveolar volume in newborn mice. BMC injection resulted in recovery of lung structure comparable to controls. EGFP-positive BMCs were identified in the lungs of the recipient mice after intraperitoneal injection. The injected EGFP cells were co-stained with endothelial and epithelial cells of the developing lung as determined by confocal microscopy. Conclusion : Our results illustrated that EGFP-positive BMCs engrafted and trans-differentiated into epithelial and endothelial cells after intraperitoneal injection in a mouse model of arrested alveolar development.

Development of Non-Destructive Sorting Technique for Viability of Watermelon Seed by Using Hyperspectral Image Processing (초분광 영상기술을 이용한 수박종자 발아여부 비파괴 선별기술 개발)

  • Bae, Hyungjin;Seo, Young-Wook;Kim, Dae-Yong;Lohumi, Santosh;Park, Eunsoo;Cho, Byoung-Kwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.35-44
    • /
    • 2016
  • Seed viability is one of the most important parameters that is directly related with seed germination performance and seedling emergence. In this study, a hyperspectral imaging (HSI) system having a range of 1000-2500 nm was used to classify viable watermelon seeds from nonviable seeds. In order to obtain nonviable watermelon seeds, a total of 96 seeds were artificially aged by immersing the seeds in hot water ($25^{\circ}C$) for 15 days. Further, hyperspectral images for 192 seeds (96 normal and 96 aged) were acquired using the developed HSI system. A germination test was performed for all the 192 seeds in order to confirm their viability. Spectral data from the hyperspectral images of the seeds were extracted by selecting pixels from the region of interest. Each seed spectrum was averaged and preprocessed to develop a classification model of partial least square discriminant analysis (PLS-DA). The developed PLS-DA model showed a classification accuracy of 94.7% for the calibration set, and 84.2% for the validation set. The results demonstrate that the proposed technique can classify viable and nonviable watermelon seeds with a reasonable accuracy, and can be further converted into an online sorting system for rapid and nondestructive classification of watermelon seeds with regard to viability.

LiDAR Chip for Automated Geo-referencing of High-Resolution Satellite Imagery (라이다 칩을 이용한 고해상도 위성영상의 자동좌표등록)

  • Lee, Chang No;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.319-326
    • /
    • 2014
  • The accurate geo-referencing processes that apply ground control points is prerequisite for effective end use of HRSI (High-resolution satellite imagery). Since the conventional control point acquisition by human operator takes long time, demands for the automated matching to existing reference data has been increasing its popularity. Among many options of reference data, the airborne LiDAR (Light Detection And Ranging) data shows high potential due to its high spatial resolution and vertical accuracy. Additionally, it is in the form of 3-dimensional point cloud free from the relief displacement. Recently, a new matching method between LiDAR data and HRSI was proposed that is based on the image projection of whole LiDAR data into HRSI domain, however, importing and processing the large amount of LiDAR data considered as time-consuming. Therefore, we wmotivated to ere propose a local LiDAR chip generation for the HRSI geo-referencing. In the procedure, a LiDAR point cloud was rasterized into an ortho image with the digital elevation model. After then, we selected local areas, which of containing meaningful amount of edge information to create LiDAR chips of small data size. We tested the LiDAR chips for fully-automated geo-referencing with Kompsat-2 and Kompsat-3 data. Finally, the experimental results showed one-pixel level of mean accuracy.

Computation of Maximum Edible Time using Monitoring Data of Staphylococcus aureus in Kimbap and Food MicroModel (Food $MicroModel^\circledR$과 황색포도상구균의 모니터링 자료를 활용한 시중 유통 김밥의 최대섭취유효시간 산정)

  • 이효민;이근영;윤은경;김현정;강윤숙;이동하;박종석;이순호;우건조
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.1
    • /
    • pp.49-54
    • /
    • 2004
  • The prevention of infectious disease from contaminated foods is very important in public health. Quantitative microbial risk assessment has been used in advance countries to achieve the safety of public health against hazardous microbial causing contaminated foods. This study was conducted to estimate maximum edible time without producing enterotoxin from Staphylococcus aureus in Kimbap selling at different domestic store using Food MicroModel and monitoring data and to compute maximum edible time by temperature with 99th percentile safety probability based on only restaurant data. For estimating maximum edible time, model operation conditions like reaching time at 2 ${\times}$ 10$^{7}$ , which enterotoxin was known as producing point from S. aureus, temperature of 28∼3$0^{\circ}C$, pH 5.2, NaCl 0.22%, aw(water activity) 0.99, and intaking one serving size of 171g in Kimbap were considered. Estimated maximum edible times by regarding outdoor temperature in summer were 3.9∼4.6 hrs in restaurant, 6.7∼7.9 hrs in department store and 7.4∼8.7 hrs in convenient store. Based on restaurant data, estimated maximum edible times with 99th percentile safety probability by temperature were 1.9 hrs in 3$0^{\circ}C$ and 17.7 hrs in 15$^{\circ}C$.