• Title/Summary/Keyword: 평균자승변위

Search Result 5, Processing Time 0.018 seconds

A Study on Optimum Cam Profile Extraction Considering Dynamic Characteristics of a Cam-Valve System (밸브 기구의 동특성을 고려한 캠 형상 설계에 관한 연구)

  • 박경조;전혁수;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.29-39
    • /
    • 1989
  • In this work, a numerical and experimental study was done to get an optimum cam profile considering dynamic characteristics of a cam-valve system. First of all, a four degree of freedom dynamic model was set up for an OHV type cam-valve acceleration while not modifying original cam shape greatly. Also another optimization which aims to enlarge the valve displacement area while reducing the peak valve acceleration, was tried. The optimized cam profile was tested experimentally and found that the measured valve displacement and pushrod force show only very small error from the analytically predicted model simulation results.

Superdiffusion and Randomness in Advection Flow Fields (이류 유동장의 초확산과 무작위성)

  • Kim, In Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1163-1171
    • /
    • 1999
  • Superdiffusive transport motions of passive scalars are numerically considered for various advection velocity fields. Calculated exponents ${\alpha}$ in the superdiffusion-defining relation ${\sigma}^2(t){\sim}t^{\alpha}$ for model flow fields agree to the theoretically predicted values. Simulation results show that the superdiffusion takes place as the tracers' motion become less random, compared to their motion at the pure molecular diffusion. Whether the flow field is random or not, degrees of superdiffusion are directly related to the velocity autocorrelation functions along the tracers Lagrangian trajectories that characterize degrees of randomness of the tracers' motion.

Adaptive control of Runout in Active magnetic bearing (능동 자기베어링 런아웃의 적응제어)

  • 김재실;배철용;이재환;안대균;최헌오
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.333-338
    • /
    • 2002
  • 자기베어링의 회전정밀도에 영향을 미치는 인자로 PWM 전력증폭기, 위치 센서 등과 같은 자기베어링 구성 장치의 동특성 및 정밀도, 시스템의 정확한 모델링, 제어기법, 런아웃 등이 있다. 본 연구에서는 능동 자기베어링을 제어하기 위해 자기베어링의 PWM 전력증폭기와 회전축을 모델링하고 이를 바탕으로 능동 자기베어링 제어를 위한 PID 제어기를 구성하였으며, 변위 센서의 부착위치 및 회전축의 진원도의 영향으로 발생하는 주기적인 런아웃 요소를 첨가하여 런아웃의 영향을 확인하였으며, 런아웃 (Runout)에 의해 발생하는 에러(Error)를 효과적으로 제어하여 자기베어링의 제어 정밀도를 향상시키기 위한 방법으로 기본적인 PID 제어기에 최소평균자승(Least Mean Square, LMS) 알고리즘을 적용한 적응 피드포워드 제어기를 구성하여 자기베어링의 능동 제어에서 발생하는 주기적인 런아웃을 효과적으로 제어할 수 있음을 MATLAB을 통한 시뮬레이션을 통해 확인하였다.

  • PDF

Mean Square Response Analysis of the Tall Building to Hazard Fluctuating Wind Loads (재난변동풍하중을 받는 고층건물의 평균자승응해석)

  • Oh, Jong Seop;Hwang, Eui Jin;Ryu, Ji Hyeob
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • Based on random vibration theory, a procedure for calculating the dynamic response of the tall building to time-dependent random excitation is developed. In this paper, the fluctuating along- wind load is assumed as time-dependent random process described by the time-independent random process with deterministic function during a short duration of time. By deterministic function A(t)=1-exp($-{\beta}t$), the absolute value square of oscillatory function is represented from author's studies. The time-dependent random response spectral density is represented by using the absolute value square of oscillatory function and equivalent wind load spectrum of Solari. Especially, dynamic mean square response of the tall building subjected to fluctuating wind loads was derived as analysis function by the Cauchy's Integral Formula and Residue Theorem. As analysis examples, there were compared the numerical integral analytic results with the analysis fun. results by dynamic properties of the tall uilding.

Seasonal sea Level oscillations in the East Sea (Sea of Japan) (동해 해수면의 계절적인 변동에 대하여)

  • OH, IM SANG;RABINOVICH, ALEXANDER B.;PARK, MYOUNG SOOK;MANSUROV, ROALD N.
    • 한국해양학회지
    • /
    • v.28 no.1
    • /
    • pp.1-16
    • /
    • 1993
  • The monthly mean sea levels at 48 stations located at the East and Yellow Seas coasts of Korea, Russia and Japan are processed to investigate seasonal sea level variations. The strong seasonal variations are found to be at the west coast of Korea (42.1 cm in Kunsan), in the region of the Korea strait and near the southern part of Primorye (30-33 cm); the weak ones near the southwestern coast of the Sakhalin Island (10-12 cm). Practically for the whole study area except the southwest Sakhalin, the general picture of the seasonal sea level changes is alike: the mean sea level rises in summer-autumn and falls in winter-spring. The spectral analysis of the records also shows that the seasonal oscillations strongly dominate in the sea level variations, more than 80% or total energy in the southern part of the investigated region and 50-70% in the northern part relate to these oscillations. The annal peak significantly prevails in spectra of the monthly sea levels for the majority of stations, the semiannual peak is also well manifested, but the seasonal peaks of higher order (corresponding to the periods of four and three months) reveal only at some records. The maximal amplitudes of annual component by a least square method are found at the Yellow Sea coast of Korea (20-21 cm) and also near the Japanese coast of the korea Strait (19-19 cm). The semiannual component has the maximal amplitudes (3-4 cm) near the south and southwestern coasts of the Sakhalin Island. The annual range of the sea levels is much weaker here than in the other regions, the relative investment of the seasonal oscillations in total energetic budget is only 35-40%, annual ($A_1$) and semiannual ($A_2$) components have nearly the same amplitude (seasonal factor $F=A_1/A_2=0.9-1.2$). On the basis of the present examination on sea level changes together with the results of Tomizawa et. al.(1984) the whole investigated area may be divided into 10 subregions, 2 of them are related to the Yellow Sea and Western part of the Korea Strait (Y1, Y2), the other ones (E1-E8) to the East Sea.

  • PDF