• Title/Summary/Keyword: 펩타이드-항체 결합

Search Result 8, Processing Time 0.017 seconds

Reactivity of the Antibodies against Purified Carp Vitellogenin and a Synthetic Vitellogenin Peptide (정제 잉어 Vitellogenin과 합성 Vitellogenin 펩타이드에 대한 항체의 반응성)

  • Moon, Dae-Kyung;Kim, Nam-Soo;Kim, Woo-Yeon
    • Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.196-201
    • /
    • 2006
  • Vitellogenin, which is found in the serum of female and male fishes exposed to environmental endocrine disrupter or estrogen hormone, is used as a biomarker for environmental contamination with an endocrine disrupter. In order to produce antibody against vitellogenin, a synthetic peptide for partial vitellogenin was injected into rabbits. In addition, by using ion exchange chromatography on DE-52, vitellogenin was purified from the serum of carp induced with $17{\beta}$-estradiol. Polyclonal antibody against purified vitellogenin reacted well with vitellogenin in the serum of carp induced with $17{\beta}$-estradiol and the serum of female carp, whereas polyclonal antibody against the vitellogenin peptide did not react with proteins in those samples. This may indicate that vitellogenin proteins, covalently modified largely, could not be detected by Western blotting with the polyclonal antibody against the synthetic vitellogenin peptide.

Measurement and Analysis of the Dynamics of Peptide-Antibody Interactions Using an Ellipsometric Biosensor Based on a Silicon Substrate (실리콘 기판을 사용한 바이오센서와 회전 타원분광계를 이용한 펩타이드-항체 접합의 동특성 측정과 분석)

  • Lee, Geun-Jae;Cho, Hyun Mo;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • We precisely measured and analyzed the dynamics of peptide-antibody interactions, using an ellipsometric biosensor based on a silicon substrate. To reduce the signal error due to the imperfect flatness of the substrate for extremely low concentrations of peptide, we fabricated the biosensor with a silicon substrate coated with Dextran SAM, instead of a glass prism coated with a thin metallic thin film. At an injection speed of $100{\mu}l/min$ of buffer liquid, we detected the dynamics of antibody-Dextran SAM or peptide-antibody fixed on biosensor, respectively. We detected the dynamics of antibody-Dextran SAM interactions down to a low concentration of 5 ng per liter, and we precisely measured the dynamics of association and dissociation of peptide and antibody down to 100 nM of peptide. We obtained the rate constants for association and dissociation from fitting the data by using deduced dynamical equation. As a result, we obtained an equilibrium constant for dissociation of 97 nM of peptide-antibody complex, which belongs to Class I.

The Improved Antigen-binding Activity of Biosimilar Remicade ScFv Antibodies by Fusion of the Leucine Zipper Domain (Leucine zipper도메인의 융합에 의한 바이오시밀러 레미케이드 Single-chain Fv 항체의 항원 결합력 개선)

  • Kim, Jin-Kyoo;Kim, Tae Hwan
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.1012-1020
    • /
    • 2020
  • Remicade is a therapeutic biosimilar natural antibody in which the mouse variable domain has been linked to the human constant domain. It is a chimeric monoclonal antibody specific to tumor necrosis factor-alpha (TNF-α) and has been developed for the treatment of rheumatoid arthritis. To investigate the biological activity of the Remicade antibody, we carried out a bioinformatics study using a protein data bank to characterize the TNF-α antigen binding mechanism of the Remicade natural antibody. Because the production of the Remicade antibody is often limited by genetic instability of the natural antibody-producing cell, we generated a Remicade single-chain variable domain fragment antibody (Remicade) in which a heavy chain variable domain (VH) is joined with a light chain variable domain (VL) by a polypeptide linker. Furthermore, Remicade was fused to a leucine zipper (RemicadeScZip) for higher production and higher antigen-binding activity than Remicade. The Remicade and Remicade ScZip were expressed in Escherichia coli and purified by a Ni+-NTA-agarose column. As expected, the purified proteins had migrated as 28.80 kDa and 33.96 kDa in sodium dodecyl sulfate-polyacrylamide electrophoresis. The TNF-α antigen binding activity of Remicade was not observed by ELISA and western blot. In contrast, RemicadeScZip showed antigen-binding activity. Additional bio-layer interferometry analysis confirmed the antigen-binding activity of RemicadeScZip, suggesting that the leucine zipper stabilized the folding of RemicadeScZip in a denatured condition and improved the TNF-α antigenbinding activity.

Antibody Functionalized UiO-66-(COOH)2 Amplified Surface Plasmon Resonance Analysis Method for fM Oxytocin (펨토몰 농도의 옥시토신 검출을 위한 항체 기능성 UiO-66-(COOH)2 증폭형 표면 플라즈몬 공명 분석법 개발)

  • Myungseob Lee;Ha-Young Nam;Su Yeon Park;Sung Hwa Jhung;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.335-340
    • /
    • 2024
  • In this paper, we synthesized organic and inorganic hybrid materials to introduce antibody functionality to UIO-66 and incorporated them into a surface plasmon resonance (SPR) assay to enhance the sensitivity of detecting small molecules such as oxytocin. A biological marker peptide called oxytocin may help in the diagnosis of heart failure, Alzheimer's disease, and cancer. To detect oxytocin at concentrations as low as a few femtomole (fM), we developed a surface sandwich assay utilizing a pair of oxytocin-specific antibodies for enhancing selectivity and one of metal organic frameworks [e.g., UiO-66-(COOH)2] possessing high porosity and surface-area as a signal amplifier. Initially, real-time SPR assays were used to confirm that each selected oxytocin-specific antibody binds strongly to oxytocin and to different binding sites on oxytocin. One of these antibodies (e.g., anti-OXT[OTI5G4]) was immobilized on the surface of a thin gold chip. Upon sequential injecting of oxytocin and the other antibody (e.g., anti-OXT[4G11]) conjugated to UiO-66-(COOH)2 onto the surface to form the surface sandwich complex of anti-OXT[OTI5G4]/oxytocin/UiO-66-(COOH)2-anti-OXT[4G11]), SPR changes, which varied with oxytocin concentration, were then measured in real time. The results demonstrated that sensitivity was amplified by over a million-fold compared to assays without UiO-66-(COOH)2, enabling oxytocin detection down to approximately 10 fM.

Effect of Digestive Enzymes on the Allergenicity of Autoclaved Market Pork Sausages (가압가열 처리한 시판 돈육 소시지의 항원성에 미치는 소화효소의 영향)

  • Kim, Seo-Jin;Kim, Koth-Bong-Woo-Ri;Song, Eu-Jin;Lee, So-Young;Yoon, So-Young;Lee, So-Jeong;Lee, Chung-Jo;Ahn, Dong-Hyun
    • Food Science of Animal Resources
    • /
    • v.29 no.2
    • /
    • pp.238-244
    • /
    • 2009
  • Food allergy is a serious nutritional problem in both children and adults. Therefore, food allergenicity reduction methods are greatly needed. The allergenicity is altered by various manufacturing processes, and the digestibility of food proteins can be affected by food processing. This study was conducted to investigate the effect of in-vitro digestibility on the allergenicity of autoclaved market pork sausages using pepsin (30min) and trypsin (5, 30, 60, 90, and 120min). The binding ability of the porcine serum albumin (PSA) from sausages A and B significantly decreased by about 30 and 23%, respectively, after autoclave treatment (121; 5, 10, and 30 min). After the pepsin and trypsin treatments, the binding ability of products A and B at 30 min decreased. These competitive indirect enzyme-linked immunosorbent assay (ci-ELISA) results corresponded well with the sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting results. The results demonstrated that the allergenicity of pork sausages considerably decreased after autoclave treatment, and were also maintained or decreased after enzyme treatment. Accordingly, autoclave treatment represents a promising processing technology for the reduction of the allergenicity of diverse food products.

Biosynthesis of recombinant human prominiinsulin in E. coli and plant systems (대장균과 식물시스템에서 재조합 인간 prominiinsulin 생합성 분석)

  • Choi, Yu Jin;Park, Su Hyun;Kim, Ji Su;Wi, Soo Jin;Park, Ky Young
    • Journal of Plant Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.169-177
    • /
    • 2013
  • Recently, the number of people with diabetes is rapidly increasing, coupled with the fact that the insulin market is remarkably increasing. Therefore, molecular farming for plant-derived pharmaceutical protein production is reported as becoming more attractive than ever. In this study, we carried out experiments step by step for development of recombinant insulin constructs, which were transformed into E. coli system, in vitro transcription and translation system, and tobacco cells. At first, recombinant proinsulin protein was successfully produced in in vitro transcription and translation system with wheat germ extract. After which, recombinant construct of prominiinsulin encoded a fusion protein of 7.8 kDa with trypsin cleavage sites at N terminus and C terminus of minimized C-peptide was tried to in vitro expression using E.coli culture. After purification with His-tag column, the resulting recombinant prominiinsulin protein was processed with trypsin, and then checked insulin biosynthesis by SDS-PAGE and western blot analysis with anti-insulin monoclonal antibody. The immunoreactive product of trypsin-treated miniinsulin was identical to the predicted insulin hexamer. The construct of 35S promoter-driven preprominiinsulin recombinant gene with signal peptide region for ER-targeting and red fluorescence protein gene [N terminus ${\rightarrow}$ tobacco E2 signal peptide ${\rightarrow}$ B-peptide (1-29 AA) ${\rightarrow}$ AAK ${\rightarrow}$ A-peptide (1-21 AA) ${\rightarrow}$ RR ${\rightarrow}$ His6 ${\rightarrow}$ KDEL ${\rightarrow}$ C terminus] was transformed into BY-2 tobacco cells. A polypeptide corresponding to the 38-kDa molecular mass predicted for fusion protein was detected in total protein profiles from transgenic BY-2 cells by western analysis. Therefore, this recombinant preprominiinsulin construct can be used for generation of transgenic tobacco plants producing therapeutic recombinant insulin.

유청 단백질에서 유도되는 생리활성 펩타이드에 관한 연구

  • Yun, Seung-Seop
    • 한국유가공학회:학술대회논문집
    • /
    • 1996.11a
    • /
    • pp.18-29
    • /
    • 1996
  • 1. CWPC중의 새로운 생리활성물질의 검색 Mouse 임파세포의 증식효과를 지표로 하는 면역기능을 검토하여 CWPC중의 면역 부활작용을 갖는 새로운 성분의 검색을 실시하였다. CWPC를 여러 가지 분획법으로 분획하여 mouse 임파세포의 증식효과를 지표로 면역 활성성분을 검색하였다. 그 결과 gel filtration, 음이온교환법을 사용하여 분획한 당을 다량 포함한 부분에 강한 면역부활담당세포에 대하여 증식활성을 나타내는 물질을 발견하였다. 이 물질은 SDS-PAGE상에서 분자량이 약 16kDa에 위치하여 Ca, P 및 당쇄를 포함한 물질이며, 이것을 GPP로 하였다. GPP에는 우유케이신의 trypsin분해물이며 Ca와 무기인을 풍부하게 포함하는 ${\beta}$-CPP와 유사한 phosphoserin 영역을 갖는 성분과 갖지 않는 성분의 2종류가 존재하며, 각각의 면역 부활활성이 인정되었다. 각 성분의 아미노산 분석, 당 분석의 결과에서 지금까지 보고된 우유중의 면역 담당세포에 대한 증식활성을 갖는 물질과는 상이한 성분인 것으로 밝혀졌다. 더욱이 이 활성물질 (GPP)은 PP cell에서도 동등한 활성이 있는 것으로 판단되었다. 이러한 결과를 종합하여 보면 CWPC중에서 지금까지 알려지지 않았던 새로운 면역 부활물질이 존재하며, 그 성분에는 CPP와 유사한 phophoserine 영역이 존재하는 성분이 포함되어 있고, N-글리코실 결합의 당쇄가 존재하는 것으로 시사되었다. 이 성분은 전신면역의 지표인 비장세포에 대해서만이 아니고, 장관면역계에 중요한 역할을 담당하는 PP cell에서도 활성이 있는 것으로 보아 전신 및 국부적인 면역기능의 부활성분으로서 응용의 가능성이 시사되었다. 2. GPP의 면역담당세포에 대한 증식활성의 메카니즘의 검토 CWPC중의 GPP의 면역담당세포증식활성의 메카니즘을 해명하기 위해 먼저 이 성분중의 어느 부분이 활성에 관여하는지를 pronase 분해 및 phophoserine 영역을 인식하는 항체를 사용하여 검토하였다. 그 결과 pronase 분해처리에서도 활성의 감소를 나타내지 않았으므로 이러한 활성에는 당이 필수 불가결하다는 점이 시사되었다. 또한 phosphoserine 영역을 인식하는 항체에 의해서도 활성은 감소하지 않는 것으로 보아 phosphoserine 영역이 세포증식활성에 관여하지 않는 것으로 판단되었다. 또한 분획한 면역담당세포에 대한 증식활성을 측정하는 것으로 이 성분의 표적면역담당세포를 동정하여, B세포에 대해서만 특이적으로 증식활성을 나타내는 것으로 밝혀졌다.

  • PDF

Polydiacetylene-Based Chemo-/Biosensor of Label Free System with Various Sensing Tools (다양한 감지 방법을 갖고 있는 폴리디아세틸렌 기반 비표지 화학/바이오센서)

  • Park, Hyun-Kyu;Park, Hyun-Gyu;Chung, Bong-Hyun
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.409-413
    • /
    • 2007
  • Polydiacetylene(PDA)-based sensors possess a number of properties that can be successfully applied for label-free detection system. PDA is one of the most attractive color-generating materials, with growing applications as sensors. Here we introduce various PDA-based devices, used as biosensor, chemosensor, thermosensor, and optoelectronics sensor. In general, PDA liposomes and films are closely packed and properly designed for polymerization via 1,4-addition reaction to form an ene-yne alternating polymer chain. PDA-based two/three dimensional structures have been used for colorimetric or fluorescent devices, sensing biological as well as chemical components. This color-generating material also present a very high charge carrier mobility, allowing its application as field-effect transistor (FET). The immobilized PDA structures or films have distinct advantages for the detection of low concentration target molecules over the aqueous solution-based detection systems. In the present review, reported detection methods by using various PDA structures are summarized with updated references.