• Title/Summary/Keyword: 펜톰

Search Result 7, Processing Time 0.022 seconds

KCl Crystal Growth and High Energy X Ray Expose of Properties (KCl 단결정의 성장 및 고 에너지 X선 조사 특성)

  • Park, Cheol-Woo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.1
    • /
    • pp.31-36
    • /
    • 2008
  • Purpose: X ray irradiates material for dose distribution confirmation through material color variation to evaluate about possibility. Materials and Methods: That is rare earth material to pure KCl and KCl impurity Eu adding 0.5mol% by Czochralski method each single crystal grow and observed color variation of KCl X ray irradiation use of linear accelerator. Results: High energy X ray irradiation KCl:Eu show the blue fluorescence with purple color that pure KCl single crystal can confirm by show was not observed, but was colored violet. Conclusion: Colors variation of KCl founds stable color center from radiation and this color variation will be used usefully to X ray measurement material and phantom.

  • PDF

Conversion Factors for Calibration of Personnel Dosimeters (개인선량계 교정을 위한 환산인자 계산)

  • Lee, Won-Koo;Lee, Tae-Young;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.1
    • /
    • pp.25-32
    • /
    • 1991
  • MCNP code was used to calculate conversion factor H(d)ma at the depths of 0.07 and 10mm within a water phantom recommended by IAEA and within a PMMA phantom required by the US dosimeter proficiency testing programmes. The calculations were performed for an expanded parrallel beam of monoenergetic photons of perpendicular incidence on one faces of the phantom. The results can be used as conversion factor in calibrating individual dosemeters in terms of the dose equivalent quantities defined directly in the phantom.

  • PDF

Assessment for the Temperature according to the Electrode Diameter of Radio Frequency Hyperthermia Using Agar Phantom (고주파 온열치료기의 전극의 직경에 따른 한천 팬톰의 온도분포 분석)

  • Lee, Yong Hee;Oh, Young Kee;Kim, Hwa Yeong;Jeon, Kyung Soo;Choi, Eun Cheol;Park, Seung Gyu;Kim, Ok Bae;Kim, Jin Hee
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Hyperthermia is effective treatment modality when it combine with the radiotherapy treatment. It is important to verify the temperature distribution of (patient's) body for the safety and effective treatment during raising the temperature. In this study, we raised the temperature in agar phantom using radio frequency (RF) Hyperthermia and protocol that manufacture recommend. Temperature distribution measured 5 section of 5 cm thickness with agar phantom. When the temperature was raised according to the increase energy. Temperature distribution was elevated at similar domain regardless of energy. The temperature tend to be increased at up side then bottom side and also increase when A large electrode was used than small one.

MR spectroscopy using single-shot RF localization technique (단일 RF 펄스를 사용한 3차원 체적 선택 방법을 이용한 MR 스펙트로 스코피)

  • Rim, C.Y.;Chun, K.W.;Ra, J.B.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.51-54
    • /
    • 1989
  • In last several years, a number of volume localization techniques, such as ISIS, VSE, SPARS and STEAM etc., have been developed for the MR spectroscopy. These localizing techniques, however, require application of several RF pulses for the 3-D volume selection and suffer from T1 and T2 decays due to relatively long RF excitation time. In this paper, we propose a single-shot RF pulse localization technique to achieve the localized 3-D volume selection. This technique combines the cylindrical volume selection technique with a radial gradient coil with single-shot RF pulse and the oscillating selection gradient technique, so thai it minimizes the volume selection time. We report some experimental results obtained with the proposed method which appears promising for 3-D volume imaging and localized spectroscopy.

  • PDF

Development of a New Radiotherapy Technique using the Quasi-Conformation Method (Quasi-Conformation 치료를 위한 새로운 방사선치료기술의 개발)

  • Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.9 no.2
    • /
    • pp.343-350
    • /
    • 1991
  • The quasi-conformation therapy was performed to get a homogeneous dose distributions for irregeular shaped tumor lesion by using the arc moving beam and beam modifying filter which was made by cerrobend alloy($\rho$=9.4 g/cc) metal. In our dose calcuation programme, it was fundmentally based on Clarkson's method to calcuate the irregular multi-step block field in rotation therapy. In this study, the expected relative depth doses under multipartial attenuator agree well with measured data at same plane. The results of comparison the dose computation with that of TLD measurement are very closed within ${\pm}5\%$ uncertainties in the irradiation to phantom with quasi-comformation method. And it has shown that irregular typed multi-step filter can be applied to quasi-conformation therapy in high energy radiation plannings.

  • PDF

Beam Shaping by Independent Jaw Closure in Steveotactic Radiotherapy (정위방사선치료 시 독립턱 부분폐쇄를 이용하는 선량분포개선 방법)

  • Ahn Yong Chan;Cho Byung Chul;Choi Dong Rock;Kim Dae Yong;Huh Seung Jae;Oh Do Hoon;Bae Hoonsik;Yeo In Hwan;Ko Young Eun
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.150-156
    • /
    • 2000
  • Purpose : Stereotactic radiation therapy (SRT) can deliver highly focused radiation to a small and spherical target lesion with very high degree of mechanical accuracy. For non-spherical and large lesions, however, inclusion of the neighboring normal structures within the high dose radiation volume is inevitable in SRT This is to report the beam shaping using the partial closure of the independent jaw in SRT and the verification of dose calculation and the dose display using a home-made soft ware. Materials and Methods : Authors adopted the idea to partially close one or more independent collimator jaw(5) in addition to the circular collimator cones to shield the neighboring normal structures while keeping the target lesion within the radiation beam field at all angles along the arc trajectory. The output factors (OF's) and the tissue-maximum ratios (TMR's) were measured using the micro ion chamber in the water phantom dosimetry system, and were compared with the theoretical calculations. A film dosimetry procedure was peformed to obtain the depth dose profiles at 5 cm, and they were also compared with the theoretical calculations, where the radiation dose would depend on the actual area of irradiation. Authors incorporated this algorithm into the home-made SRT software for the isodose calculation and display, and was tried on an example case with single brain metastasis. The dose-volume histograms (DVH's) of the planning target volume (PTV) and the normal brain derived by the control plan were reciprocally compared with those derived by the plan using the same arc arrangement plus the independent collimator jaw closure. Results : When using 5.0 cm diameter collimator, the measurements of the OF's and the TMR's with one independent jaw set at 30 mm (unblocked), 15.5 mm, 8.6 mm, and 0 mm from th central beam axis showed good correlation to the theoretical calculation within 0.5% and 0.3% error range. The dose profiles at 5 cm depth obtained by the film dosimetry also showed very good correlation to the theoretical calculations. The isodose profiles obtained on the home-made software demonstrated a slightly more conformal dose distribution around the target lesion by using the independent jaw closure, where the DVH's of the PTV were almost equivalent on the two plans, while the DVH's for the normal brain showed that less volume of the normal brain receiving high radiation dose by using this modification than the control plan employing the circular collimator cone only. Conclusions : With the beam shaping modification using the independent jaw closure, authors have realized wider clinical application of SRT with more conformal dose planning. Authors believe that SRT, with beam shaping ideas and efforts, should no longer be limited to the small spherical lesions, but be more widely applied to rather irregularly shaped tumors in the intracranial and the head and neck regions.

  • PDF