• Title/Summary/Keyword: 페로니켈슬래그 미분말

Search Result 17, Processing Time 0.022 seconds

Fluidity and strength characteristics of no-cement composite applied with ferronickel slag powder according to curing temperature (양생온도에 따른 페로니켈슬래그 미분말 적용 무시멘트 복합체의 유동성 및 강도특성)

  • Kim, Chae-Young;Yoon, Joo-Ho;Park, Jeong-Yeon;Park, Gwan-Hong;Lee, Jae-In;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.193-194
    • /
    • 2023
  • Recently, research is being conducted on geopolymers using industrial by-products as a cement substitute to reduce carbon dioxide emissions from the construction industry. Since geopolymers use industrial by-products, their performance varies depending on the type of alkali activator used, curing temperature, etc. Therefore, as part of a study to reduce carbon dioxide emissions from the construction industry, this study mixed blast furnace slag powder and ferronickel slag powder as cement substitutes, and compared and analyzed the fluidity and compressive strength of no-cement composites according to curing temperature.

  • PDF

Consideration on the Application of Low-Heat Concrete with Ferronickel Slag Aggregate to LNG Storage Tank (페로니켈슬래그 골재를 활용한 저발열 콘크리트의 LNG 저장탱크 적용성 검토)

  • Sang Hyeon Cheong;Sukhoon Pyo;Hyeong-Ki Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2024
  • The characteristics of low-heat concrete, mixed with ground blast furnace slag and ferronickel slag aggregate, were analyzed. Moreover, the applicability of this concrete for mass concrete in LNG storage tanks was examined. Initially, the study investigated the characteristics of fresh and hardened concrete. Subsequently, the temperature rising curve was obtained. Utilizing the obtained parameters from the curves, a series of thermal stress analyses for the LNG storage tank were conducted to assess the risk of cracking. The results confirmed that concrete mixtures incorporating ground blast furnace slag and ferronickel slag aggregate not only exhibited sufficient workability but also achieved a compressive strength of approximately 40 MPa within 28 days. Furthermore, the concrete demonstrated a lower terminal heat rise and a faster heat generation rate compared to low-heat Portland cement concrete. An analysis of thermal stress in various sections of the LNG tank validated a low risk of cracking.

Evaluation of Compressive Strength and Drying Shrinkage Properties of Mortar Using Ferronickel Slag Powder (페로니켈 슬래그 미분말 혼입 모르타르의 압축강도 및 건조수축 특성 평가)

  • Kim, Young-Uk;Kim, Do-Bin;Lee, Dong-Joo;Kim, Hye-Jeong;Jeong, Su-Bin;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.93-94
    • /
    • 2018
  • This study investigated the compressive strength and drying shrinkage properties of mortar using ferronickel slag powder by the kinds of industrial by-product to estimate the applicability of ferronickel slag powder for cement replacement materials.

  • PDF

Drying Shrinkage and Compressive Strength Properties of Mortar by the Blaine of Ferro-Nickel Slag Powder (페로니켈 슬래그 미분말의 분말도 변화에 따른 모르타르의 건조수축 및 압축강도 특성)

  • Kim, Young-Uk;Kim, Do-Bin;Kim, Jeong-Hyeon;Ban, Jun-Mo;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.98-99
    • /
    • 2017
  • This study investigated the drying shrinkage and compressive strength properties of mortar by the blaine of ferro-nickel slag powder to estimate the applicability of ferro-nickel slag powder for cement replacement materials. As a test result, the blaine of ferro-nickel slag powder increased, the compressive strength increased and the shrinkage rate decreased.

  • PDF

Evaluation of Fluidity and Compressive Strength of Mortar by Grading Variation of Ferro-Nickel Slag Sand (페로니켈 슬래그 잔골재의 입도 변화에 따른 모르타르의 유동성 및 압축강도 평가)

  • Kim, Do-Bin;Min, Sang-Hyun;Kim, Jeong-Hyeon;Ban, Jun-Mo;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.206-207
    • /
    • 2017
  • We investigated the fluidity and compressive strength properties of mortar by Grading Variation of Ferro-Nickel Slag Sand in order to improve the utilization of ferro-nickel which is the by-product produced by making stainless steel, in the construction industry.

  • PDF

A Study on the Properties of Hwangto Permeable Block Using Ferro Nickel Slag (페로니켈슬래그를 혼입한 황토투수블럭 물성에 관한 연구)

  • Kim, Soon-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.607-618
    • /
    • 2022
  • This study involves the development of a Hwangto permeable block for rainwater storage tanks. The permeable products that form continuous voids between Hwangto binders and aggregates are fine milled slag powder, which is an industrial by-product generated during the production of Hwangto and iron, and ferro nickel slag. The properties of Hwangto permeable blocks were studied using recycled resource aggregates. The target quality is based on KSF 2394. The Hwangto permeable block for a rainwater storage tank is made of water-permeable material, and the permeability of the Hwangto permeable block itself is 0.1mm/sec or higher, with a physical performance of over 5.0MPa in flexural strength and over 20.0MPa in compressive strength. The physical properties of Hwangto permeable block for rainwater storage tanks were researched and developed. In order to prevent flooding due to heavy rain in summer and the urban heat island phenomenon due to depletion of ground water, continuous pores are formed in the block to secure a permeability function to prevent rainwater from accumulating in the pavement of the floor, and to prevent slippage for comfortable and safe storage.