DOI QR코드

DOI QR Code

Consideration on the Application of Low-Heat Concrete with Ferronickel Slag Aggregate to LNG Storage Tank

페로니켈슬래그 골재를 활용한 저발열 콘크리트의 LNG 저장탱크 적용성 검토

  • Sang Hyeon Cheong (Infra Research Group, R&D Center, POSCO E&C) ;
  • Sukhoon Pyo (Department of Civil, Urban, Earth, and Environmental Engineering, UNIST) ;
  • Hyeong-Ki Kim (Department of Architectural Engineering, Chosun University)
  • 정상현 ((주)포스코이앤씨 R&D센터 인프라연구그룹) ;
  • 표석훈 (울산과학기술원 지구환경도시건설공학과) ;
  • 김형기 (조선대학교 건축공학과)
  • Received : 2023.12.14
  • Accepted : 2024.01.15
  • Published : 2024.03.30

Abstract

The characteristics of low-heat concrete, mixed with ground blast furnace slag and ferronickel slag aggregate, were analyzed. Moreover, the applicability of this concrete for mass concrete in LNG storage tanks was examined. Initially, the study investigated the characteristics of fresh and hardened concrete. Subsequently, the temperature rising curve was obtained. Utilizing the obtained parameters from the curves, a series of thermal stress analyses for the LNG storage tank were conducted to assess the risk of cracking. The results confirmed that concrete mixtures incorporating ground blast furnace slag and ferronickel slag aggregate not only exhibited sufficient workability but also achieved a compressive strength of approximately 40 MPa within 28 days. Furthermore, the concrete demonstrated a lower terminal heat rise and a faster heat generation rate compared to low-heat Portland cement concrete. An analysis of thermal stress in various sections of the LNG tank validated a low risk of cracking.

고로슬래그 미분말과 페로니켈슬래그 골재를 혼입한 저발열 콘크리트의 특성을 분석하고, 이 콘크리트의 LNG 저장탱크용 매스콘크리트에의 적용성을 검토하였다. 먼저 배합설계를 통해 콘크리트의 굳기 전 및 굳은 뒤 특성을 확인 하였으며, 단열온도 상승실험을 통해 단열곡선의 계수를 측정하였다. 측정된 계수를 이용해 LNG 저장탱크에 대한 수화열 해석을 진행하여 균열발생 가능성을 판단하였다. 실험 결과 적당한 유동성을 갖으면서도 28일까지 약 40 MPa의 압축강도를 확보할 수 있는 콘크리트 배합을 결정하였으며, 이 배합은 저열포틀랜드시멘트 콘크리트에 비해 최종 발열량은 낮고, 발열속도는 빨랐다. LNG 탱크의 여러 부재에 대한 수화열 해석 결과 균열 발생가능성은 낮음을 확인 하였다.

Keywords

Acknowledgement

본 연구는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 개인기초연구(RS-2023-00278148)의 지원에 의해 수행되었습니다. 본 과제에서 저자 외에 실험 및 해석에 협력해 주신 분들께 감사의 말씀 올립니다.

References

  1. Amin, M.N., Kim, J.S., Lee, Y., Kim, J.K. (2009). Simulation of the thermal stress in mass concrete using a thermal stress measuring device, Cement and Concrete Research, 39(3), 154-164.  https://doi.org/10.1016/j.cemconres.2008.12.008
  2. Choi, Y.W., Oh, S.R., Lee, J.N. (2019). Evaluation of hydration heat properties of mass concrete and crack resistance performance in practical large underground structures using ternary blended cement, Journal of the Korean Recycled Construction Resources Institute, 7(1), 82-91. 
  3. Jeon, J.K., Kim, S.G., Jeon, C.K., Kim, K.H. (2014). Study on hydration heat analysis of pier foundation-column using low heat concrete, Journal of the Korean Recycled Construction Resources Institute, 2(3), 217-224.  https://doi.org/10.14190/JRCR.2014.2.3.217
  4. Kim, Y.J., Park, S.J., Kim, K.M., Lee, E.B. (2013). Optimum binder ratio of mass concrete for LNG tank, Journal of the Korean Recycled Construction Resources Institute, 1(3), 240-245.  https://doi.org/10.14190/JRCR.2013.1.3.240
  5. Seo, T.S., Lim, C.K., Cho, Y.G. (2014). Thermal cracking control of mass concrete by vertical pipe cooling method, Journal of the Korean Recycled Construction Resources Institute, 2(3), 233-238.  https://doi.org/10.14190/JRCR.2014.2.3.233
  6. Sheng, X., Xiao, S., Zheng, W., Sun, H., Yang, Y., Ma, K. (2023). Experimental and finite element investigations on hydration heat and early cracks in massive concrete piers, Case Studies in Construction Materials, 18, e01926. 
  7. Yoon, J.H., Jeon, J.K., Jeon, C.K., Kim, K.H. (2014). Fundamental evaluation and hydration heat analysis of low heat concrete with premixed cement, Journal of the Korean Recycled Construction Resources Institute, 2(1), 10-18. https://doi.org/10.14190/JRCR.2014.2.1.010