• Title/Summary/Keyword: 페놀물질

Search Result 994, Processing Time 0.022 seconds

Preparation and Characterization of Electrospun Nanofibers Containing Natural Antimicrobials (천연 향균물질 함유 나노섬유의 제조 및 특성분석)

  • Kim, Young-Jin;Kim, Sang-Nam;Kwon, Oh-Kyoung;Park, Mi-Ran;Kang, Inn-Kyu;Lee, Se-Geun
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.307-312
    • /
    • 2009
  • The fabrication of PHBV nanofibers containing various plant polyphenols by electrospinning has been examined. It has been found that the average diameters of fibers increased by the adding of polyphenols. The resulting fibers exhibited a uniform diameter ranging from 340 to 450 nm. As the concentration of polyphenols increased, the diameter of fibers increased due to the hydrogen bonding interaction between the ester groups of PHBV and hydroxyl groups of polyphenols. The interaction between PHBV and polyphenols, which forms a complex together in solution, was verifed by UV measurement. ATR-FTIR analysis confirmed the existence of the hydrogen bonding interaction. The semicrystalline structure of the PHBV nanofiber was observed from XRD pattern. The crystallinity of PHBV nanofibers was increased by the adding of polyphenols. PHBV nanofibers containing polyphenols showed superior antimicrobial activities.

Antioxidative Properties of Phenolic Compounds Extracted from Black Rice (흑미 색소물질에 함유된 페놀화합물의 항산화 특성)

  • 정영아;이재권
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.6
    • /
    • pp.948-951
    • /
    • 2003
  • The composition and antioxidative effects of phenolic compounds in black rice were studied. The contents of free and bound phenolic compounds extracted from black rice were 845.4 and 401.6 mg respectively per 100g sample weight. Free phenolic compounds had higher antioxidation ability than those of bound phenolic compounds. Solvent fractionation of free phenolic compounds revealed that butanol fraction had the highest phenolic compounds contents and antioxidative activity among other solvent fractions. Although butanol fraction showed lower lipid peroxidation inhibition (LPI) ability than that of $\alpha$-tocopherol and BHT, free radical scavenging ability was much higher than that of $\alpha$-tocopherol and BHT, as evidenced by electron donating ability (EDA) and benzoic acid hydroxylation inhibition (BAHI) assays.

Developmental Toxicity of Alkylphenols in Amphibians: A Review (알킬페놀류 화합물의 양서류 발생독성: 종설)

  • Park, Chan-Jin;Ahn, Hae-Sun;Ahn, Hyo-Min;Gye, Myung-Chan
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.103-112
    • /
    • 2011
  • Aquatic contamination by organic pollutants has been a suspected reason for rapid decrease of amphibian populations whose embryonic and larval stages are in an aquatic environment. Amphibian embryos can be a useful model to study the ecoctoxicologial impacts of aquatic pollutants. The obtained toxicological data are useful references for the management of aquatic pollutants in public health because amphibia share many developmental events with terrestrial vertebrates including humans. Safety guidelines for the toxicological effects of aquatic contaminants of chemicals identified as hazardous should be addressed at multiple endpoints. Alkylphenols have been widely-used in agricultural, industrial, and household activities; they contaminate and can persist in aquatic environments. Exposure to alkylphenols results in endocrine disruption in aquatic animals. In this review, we summarize the developmental toxicities of alkylphenols in amphibian embryos and larva according to the exposure route, chemical concentration, duration of exposure, and affected developmental stage together with mechanisms of toxicity and typical patterns of developmental abnormality. The merits of amphibian embryos as a toxicity test model for mid- to long-term exposure to aquatic pollutants are discussed proposed.

UV/H2O2 Oxidation for Treatment of Organic Compound-spilled Water (UV/H2O2 산화를 활용한 유기오염물질 유출수 처리용 공정 연구)

  • Kim, Nahee;Lee, Sangbin;Park, Gunn;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.10
    • /
    • pp.5-12
    • /
    • 2022
  • In this study, we investigated the UV/H2O2 process to treat organic compound-spilled water. In consideration of usage and properties, benzene, toluene, phenol, and methyl ethyl ketone were selected as representative organic compounds. The selected material was first removed by natural volatilization and aeration that simulated the pretreatment of the prcoess. After that, UV/H2O2 oxidation experiments were conducted under various H2O2 concentration conditions. Benzene and toluene were mostly volatilized before reaching the oxidation process due to high volatility. Considering the volatility, oxidation experiments were performed at an initial concentration of 5 mg/L for benzene and toluene. The UV/H2O2 oxidation process achieved 100% of benzene and toluene removal after 20 minutes under all hydrogen peroxide concentration conditions. The phenol was rarely removed from the volatile experiments and oxidation tests were performed at an initial concentration of 50 mg/L. The process showed 100 % phenol removal after 30 minutes under 0.12 v/v% of hydrogen peroxide concentration condition. Methyl ethyl ketone was removed 58 % after 2 hours of volatile experiments. The process showed 99.7% Methyl ethyl ketone removal after 40 minutes under 0.08 v/v% of hydrogen peroxide concentration condition. It was confirmed that the UV/H2O2 process showed high decomposition efficiency for the four selected organic compounds, and identified the amount of hydrogen peroxide in classified organic contaminants.

A Study on the Removal of Phenol by Hybrid Process coupling adsorption with microfiltration (흡착과 정밀여과의 혼성공정에 의한 페놀 제거에 관한 연구)

  • ;;Fane, A. G.
    • Membrane Journal
    • /
    • v.6 no.2
    • /
    • pp.109-116
    • /
    • 1996
  • This work is a fundamental study for applying hybrid process coupling adsorption with microfiltration to waste-water treatment. Phenol was separated by adsorption on powdered activated carbon, adsorbed phenol with activated carbon was separated by microfiltration. As the particle size in suspension increased, filtration resistance decreased, and effect of particle concentration on resistance was less pronounced. The rate of uptake was greatly dependent on the degree of phenol loading. For a smaller amounts of activated carbon, the change of permeate concentration before break point and phenol loading with time were steeper than in the case of large amounts. Permeate concentration before break point decreased with decreasing particle size, this could be due to the increase of outer surface of particle and film mass transfer coefficient.

  • PDF

Analysis and Distribution of Polycyclic Aromatic Hydrocarbons and Chlorophenols in Sewage and Industrial Wastewater Sludge in Korea (국내 하.폐수슬러지 중 다환방향족탄화수소 및 염화페놀류의 분포 특성)

  • Ju, Joon-Hyung;Kim, Min-Young;Lee, Sung-Hee;Oh, Jeong-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.735-742
    • /
    • 2008
  • In order to evaluate the levels and distribution patterns, the concentrations of PAHs and chlorophenols were investigated in sludge samples discharged from 6 WWTPs located along Nak-dong river and 7 STPs in Busan, Korea. Levels of 16 PAHs and 19 chlorophenols in sludge samples ranged from 1.28 to 44.9 mg/kg dry wt. and from 213 to 3,850 $\mu$g/kg dry wt., respectively. Levels of PAHs in sludge samples except I5 and S4 were detected lower than those of previous studies. The distribution patterns of PAHs and chlorophenols varied with industrial wastewater sludge samples because industrial wastewater sludge had different industrial input sources. However, the distribution patterns of PAHs and chlorophenols in sewage sludge were pretty similar. Phenanthrene, fluoranthene and pyrene were dominant and the fractions of these 3 PAHs relative to 16 PAHs in sewage sludge ranged from 30.8 to 50.7%. 2-chlorophenol is dominated in most sewage sludge samples and the fraction ranged from 36.0 to 66.8%.

Studies on the Pharmacological Actions and Biological Active Components of Korean Traditional Medicine (V) -Isolation of an Antimicrobial Phenolic Compound from Duchesnea indica- (한국전통생약의 약리작용과 활성물질에 관한 연구(V) -사매(蛇?)의 항균성분획의 페놀성물질-)

  • Lee, Ihn-Rhan;Lee, Yun-Sil;Han, Yong-Nam
    • YAKHAK HOEJI
    • /
    • v.32 no.5
    • /
    • pp.308-312
    • /
    • 1988
  • A phenolic compound isolated from the ethylacetate extract of Duchesnea indica (Andr.) Focke (Rosaceae) showed antimicrobial activities against Staphylococcus aureus, Shigella dysentriae and Pseudomonas aeruginosa. This compound was identified as ellagic acid by spectral analysis.

  • PDF

Change in the Polyphenol Content of Cheongdobansi Persimmon Fruit during Development ('청도반시' 과실의 성장 중 일반 및 폴리페놀 성분의 변화)

  • Lee, Yun-Rae;Chung, Hun-Sik;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.18 no.1
    • /
    • pp.13-17
    • /
    • 2011
  • The proximate composition, and the levels of total phenols, phenolic acids, and DPPH radical scavenging activity in Cheongdobansi persimmon fruits assayed during development (from July to October), were investigated. All of moisture, crude protein and crude fiber contents decreased as picking time was delayed, however, crude fat content rose. Crude fiber content increased after September. Total phenol content tended to fall during development. The principal phenolic acids were chlorogenic acid, caffeic acid, p-coumaric acid and salicylic acid; the level of each phenolic acid tended to decrease during development. DPPH radical scavenging activity fell as picking time was delayed. Thus, harvest time influenced the levels of chemical components and the antioxidative properties of persimmon fruit. It follows that unripe fruit may be utilized as a raw material yielding many useful products.

Supported Liquid Membrane Composed of Tri-n-butyl Phosphate or Liquid Polymer for Phenol Separation (Tri-n-butyl phosphate와 액상고분자 지지액막을 이용한 페놀의 분리)

  • 안효성;이용택;윤인주;김명수
    • Membrane Journal
    • /
    • v.8 no.4
    • /
    • pp.228-234
    • /
    • 1998
  • Among various water contaminents, organic compounds like phenol are difficult to be removed or destroyed by conventional methods under the unusual discharge conditions. The separation of phenol from aqueous solution has been carried out by several methods recently: absorption by an activated carbon, solvent extraction and liquid membrane technology. The liquid membrane based on water-oil emulsification has been tested as an alternative technology of the conventional technology. In this work, tri-n-butyl phosphate(TBP) and liquid polymers were examined as a liquid membrane in the supported liquid membrane(SLM). The feed concentration of phenol was varied and various types of liquid membranes were used to examine their effects on separation of phenol. It was found that TBP, polypropylene glycol 4000(PPG 4000) and polybutytene glycol 500(PBG 500) were proper carriers because mass transfer rates through them were much higher than or similar to that through methyl isobutyl ketone(MIBK) which was used as a conventional solvent in a solvent extraction process.

  • PDF

A Study on Extraction and Adsorption of Three Phenolic Ketones (페놀케톤 3종의 추출 및 흡착에 관한 연구)

  • Sang Cheol Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.109-115
    • /
    • 2023
  • The extraction and adsorption characteristics for three phenolic ketones with high physicochemical similarity among phenolic compounds, which are alcohol fermentation inhibitors in lignocellulosic biomass hydrolysates, were investigated. The most suitable basic extractant for selectively separating acetosyringone from three phenol ketones by reactive extraction was found to be trioctylphosphine oxide. In addition, it was found that adsorption using XAD16, a polymer neutral resin adsorbent, or physical extraction using hexane, was a suitable separation method for separation of 4'-hydroxyacetophenone (HAP) and acetovanillone (AVO). A five-step fractionation process including extraction and adsorption mentioned above has been first proposed to separate and concentrate the three phenol ketones present at equal mass percentages. When physical extraction with n-hexane and re-extraction with an aqueous NaOH solution were used as the steps 4 and 5 in the fractionation process respectively, it was possible to obtain almost 70% or more of the purity of three phenolic ketones.