• Title/Summary/Keyword: 퍼텐셜 에너지

Search Result 48, Processing Time 0.026 seconds

Fabrication of Virtual Frisch-Grid CdZnTe ${\gamma}$-Ray Detector (가상 Frisch-그리드를 이용한 CdZnTe 감마선 소자 제작)

  • Park, Chansun;Kim, Pilsu;Cho, PyongKon;Choi, Jonghak;Kim, Jungmin;Kim, KiHyun
    • Journal of radiological science and technology
    • /
    • v.37 no.4
    • /
    • pp.253-259
    • /
    • 2014
  • Large volume of $6{\times}6{\times}12mm^3$ CdZnTe ${\gamma}$-ray detector was fabricated with CdZnTe single crystals grown by Traveling Heater Method (THM) to evaluate the energy resolution of 662 keV in $^{137}Cs$. Hole tailing effect which originated from the large mobility difference in electron and hole degrade energy resolution of radiation detector and its effects become more severe for a large volume detectors. Generally, single carrier collection technique is very useful method to remove/minimize hole tailing effect and thereby improvement in energy resolution. Virtual Frisch-grid technique is also one of single charge collection method through weighting potential engineering and it is very simple and easily applicable one. In this paper, we characterized CZT detector grown by THM and evaluated the effectiveness of virtual Frisch-grid technique for a high energy gamma-ray detector. The proper position and width of virtual Frisch-grid was determined from electric field simulation using ANSYS Maxwell ver. 14.0. Energy resolution of 2.2% was achieved for the 662 keV ${\gamma}$-peak of $^{137}Cs$ with virtual Frisch-grid CdZnTe detector.

A Study on the Hydrated and Dehydrated $Mn^{2+}$-Exchanged Zeolite A ($Mn^{2+}$-치환 제올라이트 A 의 수화 및 탈수 구조에 관한 연구)

  • Jong Yul Park;Yang Kim;Un Sik Kim;Sang Gu Choi
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.623-632
    • /
    • 1989
  • The positions and interaction energies of framework atoms and water molecules of $Mn^{2+}$-exchanged zeolite A were calculated using some potential energy functions and an optimization program. The sum of interaction energies of framework atoms in dehydrated $Mn_{4,5}Na_3-A$ was approximately the same as those of thermally stable $Ca^{2+}$-or $Mg^{2+}$-exchanged zeolite A. Since $Mn^{2+}$ ions can form good coordination bonds with framework oxygens even in dehydrated state, $Mn^{2+}$-exchanged zeolite A is considered to be thermally stable. The optimized positions of framework atoms and ions in this work are agreed well with the crystallographic data. Three groups of water molecules are found in hydrated $Mn^{2+}$-exchanged zeolite A; W(I) group of water molecules having only hydrogen bonds, W(II) group coordinated to $Na^+$ ion, and W(III) group coordinated to $Mn^{2+}$ ion. The average binding energy of each group of water molecules decrease in the order of W(III) > W(II) > W(I). The activation energies in the dehydration reaction of each group of water molecules increased in accordance with their binding energy.

  • PDF

Magnetism and Magnetocrystalline Anisotropy of CoFe Thin Films: A First-principles Study (CoFe 박막의 자성과 자기결정이방성에 대한 제일원리계산)

  • Kim, Eun Gu;Jekal, So Young;Kwon, Oryong;Hong, Soon Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.35-40
    • /
    • 2014
  • We investigate magnetism and magnetocrystalline anisotropy of CoFe thin films, using VASP code in GGA. In this study Co-terminated and Fe-terminated 5-layer CoFe thin films are employed. The Co-terminated CoFe thin film shows two total energy minima at 2-dimensional lattice constants of $2.45{\AA}$ and $2.76{\AA}$. The film of $2.45{\AA}$ has fcc-like structure and the film of $2.76{\AA}$ has bcc-like structure similarly to a bulk CoFe alloy. And the fcc-like film is more stable by the energy difference of about 160 meV compared to the bcc-like film. The Fe-terminated CoFe film shows very complicated behaviour of total energy which is suspected to be closely related to its complex magnetic structure. The Co-terminated CoFe film of $2.76{\AA}$ shows perpendicular magnetocrystalline anisotropy (MCA), while the film of 2.45 does parallel MCA. The Fe-terminated CoFe film also exhibits similar MCA behaviour.

Desorption of Water, Ammonia, and Methylamines on $K^+$ Ion Exchanged Zeolite L (칼륨 이온 치환 제올라이트-L 에서 물, 암모니아 및 메틸아민류의 탈착)

  • Sung-Doo Moon;Dai-Ung Choi;Un-Sik Kim;Yang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.171-178
    • /
    • 1988
  • The potential energy of adsorbate molecules in the main channel of $K^+$ ion exchanged zeolite L(K-L) was calculated. In K-L which adsorbs three molecules per unit cell, the interaction energies of $H_2O,\;NH_3,\;CH_3NH_2,\;(CH_3)_2NH,\;and\;(CH_3)_3N$ molecules with zeolite lattice are 61.11, 62.31, 65.68, 74.65, and 79.88kJ/mol, respectively. These values are less by 3.7∼12.6kJ/mol than $K^+$ ion affinities with adsorbing molecules. These results may be due to the facts that the electrostatic energies are reduced by the negative charge of the lattice oxygens. The distribution of adsorption sites of $NH_3$ and $CH_3NH_2$ in K-L was investigated by a technique of temperature programmed desorption. The experimental value of desorption energies of $NH_3$ and $CH_3NH_2$ on K-L are in good agreement with the theoritical values. It is concluded that the desorption of $NH_3$ and $CH_3NH_2$ on K-L is the first-order desorption with free readsorption.

  • PDF

A Monte Carlo Study of Dose Enhancement with kilovoltage and megavoltage photons (몬테칼로 기법을 이용한 kV, MV X선에서의 선량증가 효과 비교 평가)

  • Hwang, ChulHwan;Im, In-Chul;Kim, Jung-Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.2
    • /
    • pp.87-94
    • /
    • 2017
  • Monte Carlo simulations were used to assess dose enhancement effects for 60-, 90-, 120-, and 150-kV X-rays, and for 6- and 15-MV X-rays. The MCNPX code was used for a computer simulation of the ICRU slab phantom, and gold, gadolinium, and iron oxide (Fe2O3) were employed as dose enhancement agents. In consideration of the buildup region of the incident energy, agent concentrations of 5, 10, 15, and 20 mg/g were inserted on the surface of the phantom at a depth of 5 cm. Based on baseline values obtained in the absence of dose enhancement agents, a quantitative analysis was performed by evaluating depth-dependent changes in the absorbed energy and the dose enhancement factor (DEF). A higher concentration of dose enhancement agents led to a greater dose enhancement effect with iron oxide, gadolinium, and gold in descending order. For kilovoltage (kV) X-rays, as the incident energy was decreased and as the energy became closer to the ionization potential of the atoms in the enhancement agent, the dose enhancement effect increased. In the megavoltage (MV) X-ray range, dose enhancement was higher at 6 MV compared with 15 MV. However, the overall dose enhancements were significantly lower compared to the results obtained with kV X-rays.

The Electronic Structure and Magnetism of bcc Rh(001) Surface (체심 입방구조 Rh(001) 표면의 전자구조와 자성)

  • Cho, L.H.;Bialek, B.;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.206-210
    • /
    • 2008
  • According to the recent reports the bulk bcc Rh is ferromagnetic with a small difference of energy compared to paramagnetic state. In this study, the electronic structure and magnetism for bcc Rh(001) surface are investigated by means of the all-electron full potential linearized augmented plane wave method within the generalized gradient approximation. It is found that the surface ferromagnetic state is preferable over the paramagnetic one. For unrelaxed system, the magnetic moment of the surface layer, $0.48{\mu}B$, is slightly increased comparing with the bulk value, $0.41{\mu}B$ while the value of the subsurface layer, $0.23{\mu}B$, is much smaller than the bulk value. The total energy and atomic force calculations show that the surface layer is relaxed downward and the subsurface layer moves upward to reduce the layer distance between the surface and subsurface layers by 7.0 %. The relaxation effect leads to weakening the surface magnetic properties. Specifically, the value of the magnetic moment of the surface atom is decreased to $0.36{\mu}B$. Since the spin polarization of the subsurface layer is only $0.14{\mu}B$, it is concluded that the bcc Rh(001) surface is rather weakly ferromagnetic.

Magnetism and Half-metallicity of Co2TiSn(001) Surfaces: A First-principles Study (Co2TiSn(001) 표면의 자성 및 반쪽금속성에 대한 제일원리연구)

  • Jin, Y.J.;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.131-135
    • /
    • 2008
  • The electronic structures, magnetism, and half-metallicity of the full-Heusler $Co_2TiSn$(001) surfaces have been investigated by using the all-electron full-potential linearized augmented plane wave method within the generalized gradient approximation. We have considered both of the Co atoms terminated(Co-term) and the TiSn atoms terminated(TiSn-term) surfaces. From the calculated density of states, we found that the half-metallicity was destroyed at the surface of the Co-term, while the half-metallicity was retained at the TiSn-term. For the surface of the Co-term, due to the reduced coordination number the occupied minority d-states were shifted to high energy regions and that cross the Fermi level, thus destroy the surface half-metallicity. On the other hand the surface states at the surface of the TiSn-term were located just below the Fermi level, which reduces the minority spin-gap with respect to that of the center layer. The calculated magnetic moment of the surface Co atom for the Co-term was increased by 10 % to 1.16 ${\mu}_B$ with respect to that of the inner-layers, while the magnetic moment of the subsurface Co atom in the TiSn-term has almost same value of the innerlayers(1.03 ${\mu}_B$).

First-principles Study on Half-metallicity and Magnetism for Zinc-blende CrS(001) Surface (Zinc-blende 구조를 가진 CrS(001) 표면에서의 반쪽금속성과 자성에 대한 제일원리 연구)

  • Byun, Y.S.;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.5
    • /
    • pp.257-260
    • /
    • 2005
  • We investigated the half-metallicity and magnetism for the zinc-blende CrS(001) surfaces by use of the full-potential linearized augmented plane wave (FLAPW) method. We considered two-types of (001) surfaces terminated by Cr (Cr-Term) and S (S-Term) atoms, respectively. From the calculated layer-by-layer density of states, it is found that both of the systems retain the half-metallicity at the (001) surfaces. The calculated magnetic moment ($4.07\;{\mu}_B$) for the CrS(S) atom in Cr-Term is enhanced considerably compared to the bulk value ($3.61\;{\mu}_B$) while that ($3.15\;{\mu}_B$) of the Cr(S-1) in S-Term is much reduced.

First-principles Study on Magnetism and Electronic Structure of Fe Chain on Ag(001) (Ag(001) 표면 위에 놓인 Fe 선의 자성과 전자구조)

  • Jin, Y.J.;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.217-220
    • /
    • 2005
  • The electronic structure and magnetism of Fe chain along the [110] direction on Ag(001) were investigated by using the all-electron full-potential linearized augmented plane wave (FLAPW) method within generalized gradient approximation (GGA). The magnetic moment of Fe atom in Fe chain is calculated to be $3.02\;{\mu}_B$, which is slightly larger than that ($2.99\;{\mu}_B$) of the Fe[110] chain on Cu(001). The reduced coordination number for the Fe chain induced the Fe-d band narrowing and exchange-splitting enhancement, which are responsible for the large magnetic moment of the Fe chain. The calculated band width of the Fe-d band and the exchange-splitting are 1.7 eV and 3.2 eV, respectively.

The LDA+U Effect on the Electronic Structure and Magnetism of Bulk, Monolayer, and Linear Chain of Iron (덩어리, 단층 및 사슬 구조 철의 전자구조와 자성에 대한 LDA+U 효과)

  • Landge, Kalpana K.;Bialek, Beata;Lee, Jae-Il
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.3
    • /
    • pp.81-84
    • /
    • 2009
  • We examine the effect of U term (U = 3 eV) describing the Coulomb interactions between electrons on the results of electronic band structure calculations carried out for bcc Fe bulk, monolayer, and chain. We investigated the properties of the three Fe structures by using the all-electron total-energy full-potential linearized augmented plane wave method. The U term was included in the exchange - correlation functionals constructed on the basis of local density approximation (LDA) and general gradient approximation (GGA). We found that in the case of bcc Fe bulk structure inclusion of the U term leads to the overestimated values of magnetic moment on Fe atom. The values of magnetic moment calculated for Fe in monolayer and chain are in accordance with calculations in which the U term was not included. In general, for each system the calculated values of magnetic moment on Fe sites were larger when the U term was incorporated in the energy functional. In Fe bulk, the value of magnetic moment $2.54{\mu}_B$ for LDA+U larger than $2.25{\mu}_B$ for LDA.