Browse > Article
http://dx.doi.org/10.4283/JKMS.2014.24.2.035

Magnetism and Magnetocrystalline Anisotropy of CoFe Thin Films: A First-principles Study  

Kim, Eun Gu (Department of Physics, University of Ulsan)
Jekal, So Young (Department of Physics, University of Ulsan)
Kwon, Oryong (Department of Physics, University of Ulsan)
Hong, Soon Cheol (Department of Physics, University of Ulsan)
Abstract
We investigate magnetism and magnetocrystalline anisotropy of CoFe thin films, using VASP code in GGA. In this study Co-terminated and Fe-terminated 5-layer CoFe thin films are employed. The Co-terminated CoFe thin film shows two total energy minima at 2-dimensional lattice constants of $2.45{\AA}$ and $2.76{\AA}$. The film of $2.45{\AA}$ has fcc-like structure and the film of $2.76{\AA}$ has bcc-like structure similarly to a bulk CoFe alloy. And the fcc-like film is more stable by the energy difference of about 160 meV compared to the bcc-like film. The Fe-terminated CoFe film shows very complicated behaviour of total energy which is suspected to be closely related to its complex magnetic structure. The Co-terminated CoFe film of $2.76{\AA}$ shows perpendicular magnetocrystalline anisotropy (MCA), while the film of 2.45 does parallel MCA. The Fe-terminated CoFe film also exhibits similar MCA behaviour.
Keywords
spin transfer torque; first-principles calculation; magnetocrystalline anisotropy; magnetism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. C. Worledge, G. Hu, D. W. Abraham, J. Z. Sun, P. L. Trouilloud, J. Nowak, S. Brown, M. C. Gaidis, E. J. O'Sullivan, and R. P. Robertazzi, Appl. Phys. Lett. 98, 022501 (2011).   DOI   ScienceOn
2 H. X. Yang, M. Chshiev, B. Dieny, J. H. Lee, and K. H. Shin, Phys. Rev. B 84, 054401 (2011).   DOI   ScienceOn
3 K. Nakamura, T. Akiyama, T. Ito, M. Weinert, and A. J. Freeman, Phys Rev. B 81, 220409(R) (2010).   DOI   ScienceOn
4 D. Odkhuu, Y. S. Yun, P. Taivansaikhan, and S. C. Hong, to be published.
5 W.-G. Wang, M. Li, S. Hageman, and C. L. Chien, Nature Mater. 11, 64 (2012).   DOI
6 T. I. Cheng, C. W. Cheng, and G. Chern, J. Appl. Phys. 112, 033910 (2012).   DOI   ScienceOn
7 G. Kresse and J. Furthmüller, Phys. Rev B 54, 11169 (1996).   DOI   ScienceOn
8 G. Kresse and J. Furthmüller, Comput. Mater. Sci. 5, 15 (1996).
9 G. Kresse and D. Joubert, Phys. Rev B 59, 1758(1999).
10 C. Li, A. J. Freeman, and C. L Fu, J. Magn. Magn. Mater. 94, 134 (1991).   DOI   ScienceOn
11 S. C. Hong, J. I. Lee, and A. J. Freeman, J. Magn. Magn. Mater. 99, L45 (1991).   DOI   ScienceOn
12 C. H. Park, B. C. Lee, and J. I. Lee, J. Korean Phys. Soc. 47, 655 (2005).
13 S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H.Ohno, Nature Mater. 9, 721 (2010).   DOI   ScienceOn
14 S. Mangin, D. Ravelosona, J. A. Katine, M. J. Carey, B. D. Terris, and E. E. Fullerton, Nature Mater. 5, 210 (2006).   DOI   ScienceOn
15 T. Kishi et al., IEDM Tech. Dig. 309 (2008).
16 M. Jamali, K. Narayanapillai, X. Qiu, L. M. Loong, A. Manchon, and Hyunsoo Yang, Phys. Rev. Lett. 111, 246602 (2013).   DOI
17 G. Kim, Y. Sakuraba, M. Oogane, Y. Ando, and T. Miyazaki, Appl. Phys. Lett. 92, 172502 (2008).   DOI   ScienceOn
18 T. Kato, Y. Matsumoto, S. Kashima, S. Okamoto, N. Kikuchi, S. Iwata, O. Kitakami, and S. Tsunashima, IEEE Trans. Magn. 48, 3288 (2012).   DOI   ScienceOn
19 B. Carvello, C. Ducruet, B. Rodmacq, S. Auffret, E. Gautier, G. Gaudin, and B. Dieny, Appl. Phys. Lett. 92, 102508 (2008).   DOI   ScienceOn
20 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).   DOI   ScienceOn
21 M. Yoshikawa, E. Kitagawa, T. Nagase, T. Daibou, M. Nagamine, K. Nishiyama, T. Kishi, and H. Yoda, IEEE Trans. Magn. 44, 2573 (2008).   DOI   ScienceOn
22 P. E. Blochl, Phys. Rev B 50, 17953(1994).   DOI   ScienceOn
23 J. H. Park, C. Park, T. Jeong, M. T. Moneck, N. T. Nufer, and J. G. Zhu, J. Appl. Phys. 103, 07A917 (2008).   DOI
24 S. C. Hong, W. S. Yun, and R. Wu, Phys. Rev. B 79, 054419 (2009).   DOI   ScienceOn