• Title/Summary/Keyword: 퍼지 집합

Search Result 415, Processing Time 0.021 seconds

Fuzzy Theil regression Model (Theil방법을 이용한 퍼지회귀모형)

  • Yoon, Jin Hee;Lee, Woo-Joo;Choi, Seung-Hoe
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.366-370
    • /
    • 2013
  • Regression Analysis is an analyzing method of regression model to explain the statistical relationship between explanatory variable and response variables. This paper introduce Theil's method to find a fuzzy regression model which explain the relationship between explanatory variable and response variables. Theil's method is a robust method which is not sensive to outliers. Theil's method use medians of rate of increment based on randomly chosen pairs of each components of ${\alpha}$-level sets of fuzzy data in order to estimate the coefficients of fuzzy regression model. We propose an example to show Theil's estimator is robust than the Least squares estimator.

Design and Analysis of Type-2 TSK Fuzzy Logic Systems (Type-2 TSK 퍼지 논리 시스템의 설계 및 분석)

  • Kim, Woong-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.153-154
    • /
    • 2008
  • 본 논문의 Type-2 TSK 퍼지 논리 시스템(Fuzzy Logic System; FLS)은 전반부 멤버쉽 함수로 가우시안 형태의 Type-2 퍼지 집합을 이용하고 후반부는 계수가 상수인 1차 선형식을 사용한다. 또한 Type-1 TSK 퍼지 논리 시스템을 Type-2 TSK 퍼지 논리 시스템으로 확장하고 제안된 모델을 가스로 공정 데이터와 sugeno 데이터에 적용한다. 여기서 인위적인 노이즈를 갖는 입력 데이터를 사용하여 제안된 모델의 성능이 기존의 모델보다 우수함을 수치적인 예로 보인다.

  • PDF

A Study of Fuzzy Reasoning in Expert System (전문가 대체 시스템에서의 퍼지 추론에 관한 연구)

  • 김성혁
    • Journal of the Korean Society for information Management
    • /
    • v.7 no.1
    • /
    • pp.68-78
    • /
    • 1990
  • This paper shows the fuzzy reasoning process that is specifically designed to deal wit the inexactness or fuzziness in the expert systems. The impact of overall fuzzy reasoning reviewed when knowledge with certainty is provided. Also, the example of fuzzy reazoning used at probabilistic inference is presented.

  • PDF

An Aptitude Test System using Fuzzy Reasoning (퍼지 추론을 적용한 적성 평가 시스템)

  • 안수영;김두완;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.451-454
    • /
    • 2002
  • 본 논문에서는 개인의 적성을 판단하는 문제를 처리하기 위한 가중치 퍼지추론 알고리즘을 제시하고, 지식표현을 위해 퍼지 집합 이론과 퍼지 생성 규칙들을 이용하였다. 거리척도에 서는 퍼지값이 높은 구간의 척도를 낮은 구간의 척도에 비례하여 유사성을 구하였다. 또한, 가중치를 정량화한 값과 척도값을 연산하여 유사성을 나타냈고, 추출된 항목과 규칙과의 가능성을 구하였다. 여기서, 결과는 수검자들이 응답한 값들에 따라 임의의 직업군이 적당한 지를 나타내기 위해 확신도로 해석하였다.

An Interval Type-2 Fuzzy K-Nearest Neighbor (Interval 제2종 퍼지 K-Nearest Neighbor)

  • 황철;이정훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.271-274
    • /
    • 2002
  • 본 논문은 (1)에 기술된 퍼지 K-nearest neighbor(NN) 알고리즘의 확장인 interval 제2종 퍼지 K-NN을 제안한다. 제안된 방법에서는, 각 패턴벡터의 멤버쉽 값들에 불확실성(Uncertainty)을 할당하는 것에 의해 interval 제2종 퍼지 멤버쉽으로의 확장을 시도한다. 이러한 확장은, K의 결정에 존재하는 불확실성은 다루고, 조정할 수 있게 한다.

Implemented Logic Circuits of Fuzzy Inference Engine for DC Servo Control Using decomposition of $\alpha$-level fuzzy set ($\alpha$-레벨 퍼지집합 분해에 의한 직류 서보제어용 퍼지추론 연산회로 구현)

  • 이요섭;손의식;홍순일
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1050-1057
    • /
    • 2004
  • The purpose of study is development of a fuzzy controller which independent of a computer and its software for fuzzy control of servo system. This paper describes a method of approximate reasoning for fuzzy control of servo system, based on decomposition of $\alpha$-level fuzzy sets, It is propose that fuzzy logic algorithm is a body from fuzzy inference to defuzzificaion in cases where the output variable u directly is generated PWM. The effectiveness of quantified $\alpha$-levels on input/output characteristics of fuzzy controller and output response of DC servo system is investigated. It is concluded that $\alpha$-cut 4 levels give a sufficient result for fuzzy control performance of DC servo system. The experimental results shows that the proposed hardware method is effective for practical applications of DC servo system.

Shot Boundary Detection of Video Data Based on Fuzzy Inference (퍼지 추론에 의한 비디오 데이터의 샷 경계 추출)

  • Jang, Seok-Woo
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.611-618
    • /
    • 2003
  • In this paper, we describe a fuzzy inference approach for detecting and classifying shot transitions in video sequences. Our approach basically extends FAM (Fuzzy Associative Memory) to detect and classify shot transitions, including cuts, fades and dissolves. We consider a set of feature values that characterize differences between two consecutive frames as input fuzzy sets, and the types of shot transitions as output fuzzy sets. The inference system proposed in this paper is mainly composed of a learning phase and an inferring phase. In the learning phase, the system initializes its basic structure by determining fuzzy membership functions and constructs fuzzy rules. In the inferring phase, the system conducts actual inference using the constructed fuzzy rules. In order to verify the performance of the proposed shot transition detection method experiments have been carried out with a video database that includes news, movies, advertisements, documentaries and music videos.

Evaluation of the Probability of Failure in Rock Slope Using Fuzzy Reliability Analysis (퍼지신뢰도(fuzzy reliability) 해석기법을 이용한 암반사면의 파괴확률 산정)

  • Park, Hyuck-Jin
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.763-771
    • /
    • 2008
  • Uncertainties are pervasive in engineering geological problems. Therefore, the presence of uncertainties and their significance in analysis and design of slopes have been recognized. Since the uncertainties cannot be taken into account by the conventional deterministic approaches in slope stability analysis, the probabilistic analysis has been considered as the primary tool for representing uncertainties in mathematical models. However, some uncertainties are caused by incomplete information due to lack of information, and those uncertainties cannot be handled appropriately by the probabilistic approach. For those uncertainties, the theory of fuzzy sets is more appropriate. Therefore, in this study, fuzzy reliability analysis has been proposed in order to deal with the uncertainties which cannot be quantified in the probabilistic analysis due to the limited information. For the practical example, a slope is selected in this study and both the probabilistic analysis and the fuzzy reliability analysis have been carried out for planar failure. In the fuzzy reliability analysis, the dip angle and internal friction angle of discontinuity are considered as triangular fuzzy numbers since the random properties of the variables cannot be obtained completely under the conditions of limited information. In the study, the fuzzy reliability index and the probabilities of failure are evaluated from fuzzy arithmetic and compared to those from the probabilistic approach using Monte Carlo simulation and point estimate method. The analysis results show that the fuzzy reliability analysis is more appropriate for the condition that the uncertainties arise due to incomplete information.

Stage-wise Combination of Key Factors Affecting Healthcare User Innovation by Using Fuzzy-set Qualitative Comparative Analysis (퍼지집합 질적 비교분석을 통한 의료분야 사용자 혁신 단계별 핵심요인 조합 연구)

  • Lee, Sang-Won;Shin, Juneseuk
    • Journal of Technology Innovation
    • /
    • v.24 no.4
    • /
    • pp.193-219
    • /
    • 2016
  • We examine how combinations of key factors affecting healthcare user innovation vary by innovation stages from idea generation through R&D to commercialization and venturing using a fuzzy-set Qualitative Comparative Analysis (fsQCA) of thirty Korean cases in the healthcare field. Our empirical analysis shows that well-functioning innovation network and easy resource acquisition facilitate ideation of radical user innovation. However, technological capability and governmental support are crucial to make a shift to R&D as well as commercialization stages. Differently, incremental user innovation depends heavily on technological capability of users. Our analysis can provide policy makers as well as corporate innovation mangers with a strategic framework for boosting user innovation along three stages.

Extracting Minimized Feature Input And Fuzzy Rules Using A Fuzzy Neural Network And Non-Overlap Area Distribution Measurement Method (퍼지신경망과 비중복면적 분산 측정법을 이용한 최소의 특징입력 및 퍼지규칙의 추출)

  • Lim Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.599-604
    • /
    • 2005
  • This paper presents fuzzy rules to predict diagnosis of Wisconsin breast cancer with minimized number of feature in put using the neural network with weighted fuzzy membership functions (NEWFM) and the non-overlap area distribution measurement method. NEWFM is capable of self-adapting weighted membership functions from the given the Wisconsin breast cancer clinical training data. n set of small, medium, and large weighted triangular membership functions in a hyperbox are used for representing n set of featured input. The membership functions are randomly distributed and weighted initially, and then their positions and weights are adjusted during learning. After learning, prediction rules are extracted directly from n set of enhanced bounded sums of n set of small, medium, and large weighted fuzzy membership functions. Then, the non-overlap area distribution measurement method is applied to select important features by deleting less important features. Two sets of prediction rules extracted from NEWFM using the selected 4 input features out of 9 features outperform to the current published results in number of set of rules, number of input features, and accuracy with 99.71%.